

# 2022 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

Date: June, 2022

| Information             | Barnsley Metropolitan Borough Council<br>Details     |  |  |  |  |  |
|-------------------------|------------------------------------------------------|--|--|--|--|--|
| Local Authority Officer | John Scott                                           |  |  |  |  |  |
| Department              | Pollution Control – Regulatory Services              |  |  |  |  |  |
| Address                 | Barnsley MBC,<br>PO Box 634,<br>Barnsley,<br>S70 9GG |  |  |  |  |  |
| Telephone               | 01226 772456                                         |  |  |  |  |  |
| E-mail                  | pollutioncontrol@barnsley.gov.uk                     |  |  |  |  |  |
| Report Reference Number | ED12768137                                           |  |  |  |  |  |
| Date                    | June 2022                                            |  |  |  |  |  |

# **Executive Summary: Air Quality in Our Area**

## Air Quality in Barnsley Metropolitan Borough Council

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children, the elderly, and those with existing heart and lung conditions. There is also often a strong correlation with equalities issues because areas with poor air quality are also often less affluent areas<sup>1,2</sup>.

The mortality burden of air pollution within the UK is equivalent to 28,000 to 36,000 deaths at typical ages<sup>3</sup>, with a total estimated healthcare cost to the NHS and social care of £157 million in 2017<sup>4</sup>.

The Barnsley Metropolitan Borough Council area covers 32,853 hectares (127 square miles) and has an estimated population of approximately 239 300.

Barnsley Metropolitan Borough Council's air quality issues are typical of an urban location, with emissions from road transport being a major source of air pollution, and the underlying reason for declaration of the six Air Quality Management Areas (AQMAs). Emissions from industrial and domestic sources are still of importance however, and continue to be subject to the relevant regulation, where appropriate.

Previous assessment of the Barnsley Metropolitan Borough Council's air quality revealed the breaching (exceedance) of the annual average objective (standard) for nitrogen dioxide gas (NO<sub>2</sub>) at receptors (mainly houses). These areas are close to several arterial roads and junctions near to Barnsley town centre and close to the M1 motorway. Nitrogen

<sup>&</sup>lt;sup>1</sup> Public Health England. Air Quality: A Briefing for Directors of Public Health, 2017

<sup>&</sup>lt;sup>2</sup> DEFRA. Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

<sup>&</sup>lt;sup>3</sup> DEFRA. Air quality appraisal: damage cost guidance, July 2021

<sup>&</sup>lt;sup>4</sup> Public Health England. Estimation of costs to the NHS and social care due to the health impacts of air pollution: summary report, May 2018

dioxide is strongly associated with traffic emissions in particular. This polluting gas is associated with respiratory symptoms<sup>5</sup>. All Barnsley's current AQMAs are summarised in the table below:

| AQMA<br>No. | Adjacent Roads / Junctions                                                                       | Year<br>Declared | Estimated Number of<br>Domestic Dwellings within<br>AQMA |
|-------------|--------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------|
| 1           | M1 Motorway, 100 metres either side of<br>the central reservation within the<br>Barnsley Borough | 2001             | 265                                                      |
| 2A          | A628 Dodworth Road                                                                               | 2005             | 285                                                      |
| 4           | A61 Harborough Hill Road                                                                         | 2008             | 42                                                       |
| 5           | Junction of A633 Rotherham Road and<br>Burton Road                                               | 2008             | 16                                                       |
| 6           | A616 passing through Langsett                                                                    | 2012             | 7                                                        |
| 7           | Junction of A61 Sheffield and A6133<br>Cemetery Road                                             | 2012             | 2                                                        |

Further details of our AQMAs can be found at <u>List of Local Authorities with AQMAs -</u> <u>DEFRA, UK</u>.

The Council has an Air Quality Action Plan (AQAP), completed in May 2017 (Updated 2019) available at <a href="https://www.barnsley.gov.uk/services/pollution/air-pollution/air-quality/">https://www.barnsley.gov.uk/services/pollution/air-pollution/air-quality/</a>, which contains measures designed to improve air quality within the AQMAs and within the Council as a whole, as it is important to continually drive down emissions and reduce air pollution, even below legal standards to protect public health.

As with last year's Annual Status Report (ASR), this ASR is being written during a period of change within air quality management. The Government released the Clean Air Strategy<sup>6</sup> in 2019, which proposed new ways to tackle air pollution, particularly domestic emissions, and the Council await further direction from the forthcoming Environment Act on how air pollution can be further reduced. Furthermore, Clean Air Zones are still being

<sup>&</sup>lt;sup>5</sup> DEFRA, February 2015 – Getting to grips with air pollution – the latest evidence and techniques – A briefing for Directors of Public Health

<sup>&</sup>lt;sup>6</sup> Available at Clean Air Strategy 2019 - GOV.UK (www.gov.uk)

considered for neighbouring cities (Leeds, Greater Manchester, Sheffield-Rotherham), and the Council will monitor these developments for any potential impact on Barnsley Metropolitan Borough Council.

In 2021, there was still notably lower NO<sub>2</sub> concentrations compared with previous years within Barnsley Metropolitan Borough Council. As traffic emissions are the major source of NO<sub>2</sub> within urban areas, the reduction of traffic during the various 2020 and 2021 Covid-19 lockdowns resulted in reduced concentrations of NO<sub>2</sub>. These reductions within Barnsley Metropolitan Borough Council are consistent with similar reductions occurring nationally.

Barnsley Metropolitan Borough Council will continue to monitor concentrations in future years, and further monitoring is required in order to continue assessing longer term trends, particularly as traffic flows are now returning back to pre-Covid-19 levels. Concentrations of other air pollutants such as particulate matter 10 (PM<sub>10</sub>) were not impacted significantly by the Covid-19 lockdowns, due to the greater number of particulate matter sources and this pollutants transboundary nature.

Further details of Barnsley's local air quality, including up-to-date local data and comparison of these data with the Daily Air Quality Index (which tells us the daily pollution concentrations and their impacts on our health), can be found at our <u>Barnsley Metropolitan</u> <u>Borough Council air quality</u> webpage or <u>Air Quality in England</u> webpage. The Council believes it is important that Barnsley residents are made aware of their quality of the air they breathe and how it may impact on them.

# **Actions to Improve Air Quality**

Whilst air quality has improved significantly in recent decades, and will continue to improve due to national policy decisions, there are some areas where local action is needed to improve air quality further.

The 2019 Clean Air Strategy sets out the case for action, with goals to reduce exposure to harmful pollutants. The Road to Zero<sup>7</sup> sets out the approach to reduce exhaust emissions from road transport through a number of mechanisms; this is extremely important given

<sup>&</sup>lt;sup>7</sup> DfT. The Road to Zero: Next steps towards cleaner road transport and delivering our Industrial Strategy, July 2018

that the majority of Air Quality Management Areas (AQMAs) are designated due to elevated concentrations heavily influenced by transport emissions.

During 2020 and 2021, the Council has had significant financial and staff resources to deal with the local impact of the pandemic. This has had impact (either directly or indirectly) on the Councils' ability to deliver front line services to the same level as delivery pre-Covid-19. This includes the Councils' local air quality management duties. Nevertheless, the Council has been able to continue with the implementation of actions within the Air Quality Action Plan and continue air quality monitoring.

The Councils' Air Quality Action Plan Steering Group, consisting of Council officers from those services best placed to deliver local air quality improvement, continues to meet to progress actions to improve air quality. The group is chaired by Barnsley's Director of Public Health and the group oversees progress within the Councils' Air Quality Action Plan. The Plan contains 17 actions designed to improve the quality of the air we breathe, and we report annually to Government on progress on improving local air quality. The actions in the Plan are based around five key themes, with an aim assigned to each of them:

| Key Theme           | Aim                                                                                                                                                                                                  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduce Traffic      | We aim to improve air quality by promoting public transport and other travel alternatives to the use of the private car                                                                              |
| Behavioural Change  | We aim to improve air quality by encouraging people who live, work or learn in Barnsley to take steps to reduce their impact                                                                         |
| Increase Efficiency | We aim to improve air quality by ensuring our transport networks operate as efficiently as possible by smoothing traffic flows and reducing congestion                                               |
| Improve Fleet       | We aim to improve air quality by reducing emissions from our Barnsley MBC fleet and other assets                                                                                                     |
| Regulation          | We aim to improve air quality by ensuring that industrial and domestic air pollution<br>is correctly and fairly regulated, and ensuring that businesses are aware of their<br>statutory requirements |

In 2019, Barnsley Metropolitan Borough Council (MBC), along with our partners at Doncaster MBC, were awarded DEFRA air quality grant to undertake an eco-driver training project, encouraging local drivers who use their vehicles for business purposes to

#### LAQM Annual Status Report 2022

adopt eco-driving techniques in a bid to lower emissions (Eco Business Driving (ecobusinessdriving.co.uk)). Prior to Covid-19, this project was progressing well, but had to be halted as the training involved face-to-face tuition. Following discussions with DEFRA, the Council are now proceeding with the project by use of an online training module.

In November 2019, Barnsley Metropolitan Borough Council formally adopted a Sustainable Travel Supplementary Planning Document in order to further facilitate green travel options for new development within the Council, including the requirement for electric vehicle charge points. This should increase the availability of charge points in the Council, both at new houses development for future residents, but also at future commercial and retail development. In 2021, the electric vehicle charge points were installed throughout Barnsley Metropolitan Borough Council, please visit <u>Zap-Map</u> (Map of charging points for electric car drivers in UK: Zap-Map) to find the nearest charging point to you. Barnsley Metropolitan Borough Council will also be developing a project to install further charge points across the borough using available government grant funding. For information visit <u>https://www.barnsley.gov.uk/services/roads-travel-andparking/parking/electric-vehicle-charging-faqs/.</u> Additionally, the <u>Sustainable Travel</u> <u>Supplementary Planning Document</u> was updated in November 2021, which now reflects latest developments in provision of electric vehicle charge points.

In conjunction with South Yorkshire partners Doncaster MBC, in 2020 the Council was successful in gaining DEFRA air quality grant funding for a "School Streets" project, designed to highlight the benefits of active travel for the daily "school-run". This project successfully ran in 2021, with the roads around Shawlands, Holy Rood and Joseph Locke Primary Schools being closed to encourage families to leave their car at home and walk, scoot or cycle to school instead, this was the fourth out of ten planned school road closure events. For more information visit <u>School Streets project continues its mission to create healthier and safer environments outside our schools</u> (barnsley.gov.uk), <u>Successful School Streets project sets the scene for future schemes</u> (barnsley.gov.uk) or watch the School Streets video by Barnsley Metropolitan Borough Council <u>here</u>, which will provide you with more information about the project itself, including some great feedback from parents, pupils and school staff.



In 2020, the Sheffield City Region was awarded £166 million from the Government's "Transforming Cities Fund" to encourage an increase in journeys made by low carbon, sustainable modes and tackle air pollution. In forthcoming years up to 2022, the Council will be able to bid into this fund for ambitious schemes in the Borough in order to assist in the changes to more sustainable forms of transport, with schemes to be completed by March 2023.

Following the Councils' declaration of a Climate Emergency in 2019, in September 2020 the Council released its first Sustainable Energy Action Plan (SEAP) 2020 -2025. SEAP will aid the Council in becoming net zero carbon emissions by 2040 (if not earlier if possible) and the Council net zero by 2045. Projects undertaken following the SEAP over the next five years will also benefit local air quality as well as carbon reduction, as the Council seeks to reduce emissions because of more sustainable transport, energy efficiency, and promotion of renewable energy. Further information can be found at Reducing carbon emissions (barnsley.gov.uk).

In 2021, Barnsley Metropolitan Borough Council were in the process of revoking (removing) AQMA 5 at the junction of Burton Road and Rotherham Road, Monk Bretton. This AQMA was successfully revoked in February 2022.

Barnsley Metropolitan Borough Council will continue to work with partner organisations, such as neighbouring local authorities, the City Region, the Environment Agency and Highways England in order to continue our work to improve the quality of the air we breathe.

Finally, Barnsley Metropolitan Borough Council understand that the forthcoming Environment Bill is currently undergoing the Committee Stage at Parliament. The Council will take account of any air quality requirements of the Bill going forward.

## **Conclusions and Priorities**

In 2021, only four non-automatic monitoring sites exceeded the Air Quality (AQ) objective of 40  $\mu$ g/m<sup>3</sup>, these were diffusion tubes 41 and 43 located within the Air Quality Management Area (AQMA) 4 and diffusion tubes 53 and 62. Though, once distance corrected to the nearest relevant receptor, they were found to be below the AQ objective.

Barnsley Metropolitan Borough Council are still seeing the impacts of Covid-19 traffic restrictions throughout 2021, overall, the annual mean concentrations have risen slightly higher than 2020 concentrations but are all still significantly lower than pre-Covid-19 concentrations. It is anticipated that traffic emissions will continue to rise as traffic flows return to pre-Covid-19 levels. Therefore, the Council cannot yet predict with certainty that air pollution concentrations will continue to meet legal standards in future years.

Currently, there is not any monitoring of PM<sub>2.5</sub> completed within Barnsley Metropolitan Borough Council. However, as recommended within Chapter 7 of LAQM Technical Guidance (TG) (16), in order to obtain an estimate of PM<sub>2.5</sub> concentrations within Barnsley Metropolitan Borough Council, a national PM<sub>10</sub> to PM<sub>2.5</sub> annual mean conversion factor of 0.7 was applied to the automatic site 'Barnsley A635 Kendray Roadside' PM<sub>10</sub> annual mean which found that the PM<sub>2.5</sub> AQ objective was not being breached.

For  $PM_{10}$ , there have been no exceedances of the annual and 24-hour mean AQ objectives for the past 10 years, taking into account that the 24-hour mean AQ objective should not be exceeded more than 35 times per year.

The ratified continuously monitored NO<sub>2</sub> annual mean and hourly mean concentrations for the past five years have also been consistently below the AQ objective.

AQMA 5 at the junction of Burton Road and Rotherham Road, Monk Bretton was successfully revoked in February 2022.

Barnsley Metropolitan Borough Council have further work to do, which includes improving air quality within the AQMAs in order to achieve long-term compliance (particularly in those AQMAs where road traffic emissions are increased due to gradient), whilst continuing to improve air quality as a whole.

## Local Engagement and How to get Involved

Further information on local air quality can be obtained from the Councils' air quality web page <u>Air quality</u> (barnsley.gov.uk) and South Yorkshire Clean Air Campaign web page (<u>Care4Air | Barnsley</u>).

The Council also has an active travel hub, <u>https://barnsley.activetravelhub.co.uk/</u>, which promotes cycling and walking activity in the Borough.

Local stakeholders are invited to contact the Council regarding local air quality issues. Contact details are given below. Therefore, if you would like more information on our current and past air quality and what we are doing to improve the quality of the air we breathe, please contact us.

Send an e-mail to pollutioncontrol@barnsley.gov.uk

Call us on 01226 773743 Monday to Thursday 8:30am to 5pm Friday 8:30am to 4:30pm Please note, there is no answering service outside normal office hours.

Or write to:

Barnsley MBC Regulatory Services Pollution Control PO Box 634, Barnsley, S70 9GG

### **Local Responsibilities and Commitment**

This ASR was prepared by Ricardo Energy and Environment with the support, agreement and approval of the following officers and departments:

John Scott, Service Manager (Pollution Control) – Regulatory Services

This ASR has not been signed off by a Director of Public Health.

If you have any comments on this ASR please send them to John Scott at:

Address: Public Health Directorate

Barnsley Metropolitan Borough Council

PO Box 634

Barnsley

S70 9GG

Telephone: 01226 772456

Email: pollutioncontrol@barnsley.gov.uk

## Table of Contents

| Executive Summary: Air Quality in Our Area                                               | i                  |
|------------------------------------------------------------------------------------------|--------------------|
| Air Quality in Barnsley Metropolitan Borough Council                                     | i                  |
| Actions to Improve Air Quality                                                           | iii                |
| Conclusions and Priorities                                                               | vii                |
| Local Engagement and How to get Involved                                                 | viii               |
| Local Responsibilities and Commitment                                                    | viii               |
| 1 Local Air Quality Management                                                           | 1                  |
| 2 Actions to Improve Air Quality                                                         | 2                  |
| 2.1 Air Quality Management Areas                                                         | 2                  |
| 2.2 Progress and Impact of Measures to address Air Quality in Barnsley M Borough Council |                    |
| 2.3 PM <sub>2.5</sub> – Local Authority Approach to Reducing Emissions and/or Conce      | entrations14       |
| 3 Air Quality Monitoring Data and Comparison with Air Quality Ob                         | jectives and       |
| National Compliance                                                                      | 17                 |
| 3.1 Summary of Monitoring Undertaken                                                     | 17                 |
| 3.1.1 Automatic Monitoring Sites                                                         | 17                 |
| 3.1.2 Non-Automatic Monitoring Sites                                                     |                    |
| 3.2 Individual Pollutants                                                                | 19                 |
| 3.2.1 Nitrogen Dioxide (NO <sub>2</sub> )                                                |                    |
| 3.2.2 Particulate Matter (PM <sub>10</sub> )                                             |                    |
| 3.2.3 Particulate Matter (PM <sub>2.5</sub> )                                            |                    |
| 3.2.4 Sulphur Dioxide (SO <sub>2</sub> )                                                 |                    |
| Appendix A: Monitoring Results                                                           | 26                 |
| Appendix B: Full Monthly Diffusion Tube Results for 2021                                 | 57                 |
| Appendix C: Supporting Technical Information / Air Quality Monitor                       | -                  |
| New or Changed Sources Identified Within Barnsley Metropolitan Borough Co                | ouncil During 2021 |
| Additional Air Quality Warks Undertaken by Demoloy Matronalitan Derevah C                |                    |
| Additional Air Quality Works Undertaken by Barnsley Metropolitan Borough C               | U                  |
| QA/QC of Diffusion Tube Monitoring                                                       | 62                 |
| Diffusion Tube Annualisation                                                             |                    |
| Diffusion Tube Bias Adjustment Factors                                                   | 63                 |
| NO <sub>2</sub> Fall-off with Distance from the Road                                     |                    |
| QA/QC of Automatic Monitoring                                                            | 67                 |
| PM10 Monitoring Adjustment                                                               | 70                 |
| Automatic Monitoring Annualisation                                                       |                    |
| $NO_2$ Fall-off with Distance from the Road                                              | 70                 |
| Appendix D: Map(s) of Monitoring Locations and AQMAs                                     | 75                 |

| Appendix E: Summary of Air Quality Objectives in England | 84 |
|----------------------------------------------------------|----|
| Glossary of Terms                                        | 85 |
| References                                               | 86 |

# **Figures**

| Figure A.1 – Trends in Annual Mean NO <sub>2</sub> Concentration ( $\mu$ g/m <sup>3</sup> ) (Non-Automatic) | .41 |
|-------------------------------------------------------------------------------------------------------------|-----|
| Figure A.2 – Trends in Number of NO <sub>2</sub> 1-Hour Means > $200\mu g/m^3$                              | .50 |
| Figure A.3 – Trends in Annual Mean PM <sub>10</sub> Concentrations                                          | .52 |
| Figure A.4 – Trends in Number of 24-Hour Mean PM <sub>10</sub> Results > 50µg/m <sup>3</sup>                | .54 |

- Figure D. 2 Map of Non-Automatic Monitoring in and around AQMA 1
- Figure D. 3 Map of Non-Automatic Monitoring in and around AQMA 2A (West)
- Figure D.3 1 Map of Non-Automatic Monitoring in and around AQMA 2A (East)
- Figure D. 3 Map of Non-Automatic Monitoring in and around AQMA 2A
- Figure D. 4 Map of Non-Automatic Monitoring in and around AQMA 4
- Figure D. 5 Map of Non-Automatic Monitoring in and around AQMA 5
- Figure D. 6 Map of Non-Automatic Monitoring in and around AQMA 6
- Figure D. 7 Map of Non-Automatic Monitoring in AQMA 7
- Figure D. 8 Map of Automatic Monitoring in Barnsley

#### Figure C. 1. National Bias Adjustment Spreadsheet (03/22)

# Tables

| Table 2.1 – Declared Air Quality Management Areas                                                           | 3          |
|-------------------------------------------------------------------------------------------------------------|------------|
| Table 2.2 – Progress on Measures to Improve Air Quality                                                     | 11         |
| Table 2.3         PM2.5 from PM10 measurements for Barnsley Metropolita                                     | n          |
| Borough Council, 2017 - 2021                                                                                |            |
| Table 2.3of fraction of mortality attributable to particulate air pollut                                    | ion (new   |
| method), 2018 - 2020                                                                                        |            |
| Table A.1 – Details of Automatic Monitoring Sites                                                           | 26         |
| Table A.2 – Details of Non-Automatic Monitoring Sites                                                       | 27         |
| Table A.3 – Annual Mean NO <sub>2</sub> Monitoring Results: Automatic Monitoring ( $\mu$ g/m <sup>3</sup> ) | 34         |
| Table A.4 – Annual Mean NO2 Monitoring Results: Non-Automatic Monitoring (µc                                | g/m³)35    |
| Table A.5 – 1-Hour Mean NO <sub>2</sub> Monitoring Results, Number of 1-Hour Means > 2                      | 00µg/m³    |
|                                                                                                             | 49         |
| Table A.6 – Annual Mean PM <sub>10</sub> Monitoring Results (μg/m <sup>3</sup> )                            | 51         |
| Table A.7 – 24-Hour Mean PM10 Monitoring Results, Number of PM10 24-Hour M                                  | leans >    |
| 50µg/m <sup>3</sup>                                                                                         | 53         |
| Table A.8 – Annual Mean PM <sub>2.5</sub> Monitoring Results (μg/m <sup>3</sup> )                           | 55         |
| Table A.9 – SO <sub>2</sub> 2021 Monitoring Results, Number of Relevant Instances                           | 56         |
| Table B.1 – NO <sub>2</sub> 2021 Diffusion Tube Results ( $\mu$ g/m <sup>3</sup> )                          | 57         |
| Table C.1 – Bias Adjustment Factor                                                                          | 64         |
| Table C.1 1 National bias to local bias comparison                                                          |            |
| Table C.2 – Annualisation Summary (concentrations presented in $\mu$ g/m <sup>3</sup> )                     | 71         |
| Table C.3 – Local Bias Adjustment Calculation                                                               | 73         |
| Table C.4 – NO2 Fall off With Distance Calculations (concentrations presented in                            | ι μg/m³)74 |
| Table E.1 – Air Quality Objectives in England                                                               | 84         |

# 1 Local Air Quality Management

This report provides an overview of air quality in Barnsley Metropolitan Borough Council during 2021. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Barnsley Metropolitan Borough Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England are presented in Table E.1.

# 2 Actions to Improve Air Quality

# **Air Quality Management Areas**

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority should prepare an Air Quality Action Plan (AQAP) within 12 months setting out measures it intends to put in place in pursuit of compliance with the objectives.

A summary of AQMAs declared by Barnsley Metropolitan Borough Council can be found in Table 2.1. The table presents a description of the six AQMAs that were designated within Barnsley Metropolitan Borough Council in the reporting year 2021. Appendix D: Map(s) of Monitoring Locations and AQMAs provides maps of the AQMAs and also the air quality monitoring locations in relation to the AQMAs. The air quality objectives pertinent to the current AQMA designations are as follows:

- NO<sub>2</sub> annual mean;
- NO<sub>2</sub> 1-hour mean (AQMA 6 only)

In February 2022, Barnsley Metropolitan Borough Council successfully revoked AQMA 5, originally declared in 2008 due to exceeding the NO<sub>2</sub> annual mean concentration (see monitoring/additional section).

#### Table 2.1 – Declared Air Quality Management Areas

| AQMA<br>Name | Date of<br>Declaration | Pollutants<br>and Air<br>Quality<br>Objectives | One Line Description                                                                                                                                            | Is air quality in<br>the AQMA<br>influenced by<br>roads<br>controlled by<br>National<br>Highways? | Level of<br>Exceedance:<br>Declaration | Level of<br>Exceedance:<br>Current Year | Name and Date of AQAP Publication       | Web Link to AQAP                                                            |
|--------------|------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|
| No.1         | 03/10/2001             | NO₂<br>Annual<br>Mean                          | An area encompassing<br>residential properties<br>one hundred metres<br>either side of the central<br>reservation of the M1<br>motorway in Barnsley             | YES                                                                                               | 46.4 µg/m³                             | 25.0 µg/m³                              | Barnsley MBC Air<br>Quality Action Plan | https://www.barnsley.go<br>v.uk/media/18071/air-<br>quality-action-plan.pdf |
| No. 2A       | 16/06/2005             | NO₂<br>Annual<br>Mean                          | Residential properties<br>along Dodworth Road<br>between Junction 37 of<br>the M1 motorway and<br>Town End Roundabout,<br>including a portion of<br>Summer Lane | NO                                                                                                | 49.7 µg/m³                             | 34.6 μg/m <sup>3</sup>                  | Barnsley MBC Air<br>Quality Action Plan | https://www.barnsley.go<br>v.uk/media/18071/air-<br>quality-action-plan.pdf |
| No. 4        | 07/07/2008             | NO₂<br>Annual<br>Mean                          | Residential properties<br>along the uphill<br>carriageway of<br>Harborough Hill Road<br>from the gyratory                                                       | NO                                                                                                | 58.6 µg/m³                             | 51.3µg/m³                               | Barnsley MBC Air<br>Quality Action Plan | https://www.barnsley.go<br>v.uk/media/18071/air-<br>quality-action-plan.pdf |

| AQMA<br>Name | Date of<br>Declaration                                                                                       | Pollutants<br>and Air<br>Quality<br>Objectives | One Line Description                                                                                                               | Is air quality in<br>the AQMA<br>influenced by<br>roads<br>controlled by<br>National<br>Highways? | Level of<br>Exceedance:<br>Declaration | Level of<br>Exceedance:<br>Current Year | Name and Date of AQAP Publication       | Web Link to AQAP                                                            |
|--------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|
| No.5         | 07/07/2008                                                                                                   | NO₂<br>Annual<br>Mean                          | Residential properties<br>along the uphill<br>carriageway of Burton<br>Road adjacent to the<br>junction with the A633<br>Rotherham | NO                                                                                                | 41.1 μg/m³ 34.8 μg/m³                  |                                         | Barnsley MBC Air<br>Quality Action Plan | https://www.barnsley.go<br>v.uk/media/18071/air-<br>quality-action-plan.pdf |
| No.6         | $\begin{array}{c} 30/08/2012\\ (Date\\ amended:\\ 27/10/2016\\ to include\\ NO_2 1-hour\\ mean) \end{array}$ | NO₂<br>Annual<br>Mean                          | Residential properties<br>along the A616<br>Manchester Road in<br>Langsett                                                         | YES                                                                                               | 77.1 μg/m <sup>3</sup>                 | 36.3 µg/m³                              | Barnsley MBC Air<br>Quality Action Plan | https://www.barnsley.go<br>v.uk/media/18071/air-<br>quality-action-plan.pdf |
| No.7         | 30/08/2012                                                                                                   | NO₂<br>Annual<br>Mean                          | Residential properties at<br>the junction of Sheffield<br>Road and the A6133<br>Cemetery Road                                      | NO                                                                                                | 48.5 μg/m³                             | 33.6 µg/m <sup>3</sup>                  | Barnsley MBC Air<br>Quality Action Plan | https://www.barnsley.go<br>v.uk/media/18071/air-<br>quality-action-plan.pdf |

# Progress and Impact of Measures to address Air Quality in Barnsley Metropolitan Borough Council

DEFRA's appraisal of last year's ASR concluded that:

- 1. The Council have provided a thorough, comprehensive report which contains the required content.
- Comments from last year's ASR were mentioned and addressed in the 2021 ASR. The Council is encouraged to continue this.
- The report clearly details the Councils review of AQMAs. The discussion of trends is discussed isolating patterns with each AQMA, and graphs group diffusion tubes by AQMA. This makes the interpretation of trends in AQMAs clear to the reader and demonstrates a thorough and well-considered review of AQMAs. Decisions regarding revocation of AQMAs No. 1 and No. 5, and the maintaining of remaining AQMAs is supported.
- 4. QA/QC procedures have been applied appropriately and accurately, with justifications outlined sufficiently in the Appendix. The Council have compared their local bias adjustment factor to prior years, noting a lower value this year. The Council may consider including a comparison to the national bias adjustment factor to interrogate the lower adjustment factor further and provide a more comprehensive justification for the chosen factor.
- 5. Overall, the report is detailed, concise and satisfies the criteria of relevant standards. The Council should continue their good and thorough work.

Barnsley Metropolitan Borough Council has taken forward a number of direct measures during the current reporting year of 2021 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. 17 measures are included within Table 2.2, with the type of measure and the progress Barnsley Metropolitan Borough Council have made during the reporting year of 2021 presented. Where there have been, or continue to be, barriers slowing the progress of the implementation improvement measures, these are also presented within Table 2.2.

More detail on these measures can be found in the Air Quality Action Plans, available at <u>Air quality action plan (barnsley.gov.uk)</u>, which includes important links to other local and regional strategies which have contributed to the Plan.

#### LAQM Annual Status Report 2022

Key completed measures are:

- ECO Stars we intend however to keep this within the Action Plan, should funding to continue become available in future years
- ECO Stars taxis
- Barnsley Intelligent Transport System
- Promoting Travel Alternatives
- Anti-Idling Policy Feasibility Study
- Revocation of AQMA No. 5

Barnsley Metropolitan Borough Council expects the following measures to be completed over the course of the next reporting year:

 Eco-driver training project – a DEFRA Air Quality Grant funded project working with local grey fleet drivers (drivers who use their personal car for business use) in order to reduce emissions using Eco-driver training techniques. A final report will be submitted to DEFRA by December 2021.

The Council continue to be aware of proposals for Clean Air Zones (CAZs) within nearby local authorities in South and West Yorkshire. Whilst CAZs are not proposed for Barnsley, we will continue to work with these authorities in order to fully understand the impact of the implementation of these zones on Barnsley.

Barnsley Metropolitan Borough Council's priorities for the coming year are:

- Where appropriate the Council will bid for funding for actions within our Air Quality Action Plan, as and when this funding become available.
- Following a successful DEFRA joint air quality grant bid with our partners Doncaster MBC and Sheffield City Region, we will be completing a scheme involving temporary road closures around local schools, along with active travel initiatives in order to highlight the benefits of cycling and walking.

- To continue to work with developers to minimise the air quality impact of new development, and to ensure that this development takes account of future sustainable transport modes, and in particular refine the Councils' requirement of electric vehicle charge points for new development in the Borough, in order ensure installation of the most optimum charge point schemes.
  - To align the Air Quality Action Plan with the Councils' Sustainable Energy Action Plan to ensure that the co-benefits of improved air quality and reduction in Carbon emissions in the Borough are maximised.
  - Continue monitoring both inside and outside of AQMAs to gauge progress with actions and ensure continued compliance outside of our AQMAs, and assess the continued direct and indirect impact of the pandemic and subsequent recovery on air pollution concentrations
  - To work with Public Health colleagues in order to raise awareness of poor air quality and action that can be taken to reduce emissions and develop programmes such as anti-idling and promotion of Clean Air Day.
  - To work with nearby local authorities who may be required to implement Clean Air Zones, to understand the impact of these zones may have on Barnsley.
  - To re-draft the Action Plan, in light of completion of the previous Action Plan 2016 to 2021 and development of the Councils' Sustainable Energy Action Plan

The principal challenges and barriers to implementation that Barnsley Metropolitan Borough Council anticipates facing are engaging with stakeholders (especially face-toface) as we continue to deal with the impacts of the Covid-19 pandemic. Working with local business (including bus fleets) will be affected by their striving to recover from the impact of the pandemic, for example, the bus fleets are expecting future projections of patronage post pandemic to be lower than previously, and this situation will be monitored closely by the Barnsley Bus Partnership.

Progress on the following measures has been slower than expected due to:

- Eco-driver training project this project should have been completed by June 2020. As the training was primarily face-to-face, the project was halted due to the various lockdown restrictions. Following discussions with DEFRA an online training module was developed to encourage remote training, however this has resulted in extending the deadline for completion of the project to July 2021.
- Barnsley Bus Partnership Agreement this has been a very difficult time for bus companies and this voluntary agreement will be reviewed in light of the pandemic, trends in patronage etc. Consequently, the voluntary agreement is being considered for a replacement with an enhanced statutory agreement. Further renewal to younger less polluting fleet will form part of this consideration.
- Encourage uptake of lower emission vehicles and alternative fuels electric vehicle charging points capable of charging up to 40 vehicles at various car parks across Barnsley. This work was supposed to be undertaken in 2020, but was delayed until 2021 due to the pandemic

Whilst the measures stated above and in Table 2.2 will help to contribute towards compliance, Barnsley Metropolitan Borough Council anticipates that further additional measures not yet prescribed will be required in subsequent years to achieve compliance and enable the revocation of AQMA 4 (Harborough Hill Road) and AQMA 6 (A616 Langsett), assuming that traffic flows return to at least pre-pandemic levels.

Barnsley Council has taken forward several direct measures during the current reporting year of 2020 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2.

Details of all measures completed, in progress or planned are set out in Table 2.2. Other ongoing challenges and barriers to implementation that the Council have encountered continue to be identifying solutions to increased emissions due to gradients within two of AQMAs, without causing displacement of emissions elsewhere. Previous ASRs have discussed at length the issues of increased emissions due to uphill gradient within two of AQMAs (AQMAs 4 and 6). With regard to AQMA 4 our position remains the same as detailed within last years' ASR, which is:

"We have discussed this with DEFRA officials, suggesting further national guidance be issued on how to deal with this issue. We believe that local circumstances dictate it would be extremely difficult to reduce the impact of gradient on emissions within this AQMA,

#### LAQM Annual Status Report 2022

without significant displacement of emissions elsewhere to nearby roads also with roads, significant gradient and adjacent relevant exposure.

This issue was previously raised within our 2017 and 2018 ASRs, and consequently, should opportunity arise, we would be happy to discuss issue at length with DEFRA and its representatives in order to identify a way forward." This position remains.

Monitoring data obtained within all our AQMAs are discussed in detail within 'Section 3: Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance' of this report.

Barnsley Metropolitan Borough Council are aware that previous predictions of improved air quality have proved incorrect due to then unknown issues, such as primary NO<sub>2</sub> from vehicle exhausts, failure by Euro standards to achieve expected improvements etc. Furthermore, any predictions for compliance in Barnsley are based upon trends obtained from roadside diffusion tube data

In previous ASR appraisals' DEFRA have stated that *"it will remain an important focus in future ASR reports, that Action Plan measures should be reviewed in relation to their impacts on air quality, and whether there are adequate measures in place to provide the levels of emission reductions required to meet the air quality objectives".* 

For our 2018 ASR, Barnsley MBC therefore sought further clarification from the LAQM helpdesk on how this could be undertaken, particularly with regard to quantifying anticipated emission reduction in Table 2.2. To summarise this correspondence, the Helpdesk proposed the use of the below matrix in order quantify air quality impacts:

#### Figure 2.2 Quantification of Emission Reduction

|       | Costs                   | Air Qu | uality Impacts                                                 | Timescale     |         |  |  |
|-------|-------------------------|--------|----------------------------------------------------------------|---------------|---------|--|--|
| Score | Approximate<br>Cost (£) | Score  | Indicative<br>Reduction in<br>NO <sub>2</sub><br>Concentration |               | Years   |  |  |
| 7     | <100k                   | 7      | >5 µg/m³                                                       | Short (S)     | < 2     |  |  |
| 6     | 100-500k                | 6      | 2-5 µg/m³                                                      |               |         |  |  |
| 5     | 500k-1million           | 5      | 1-2 µg/m <sup>3</sup>                                          |               |         |  |  |
| 4     | 1-10 million            | 4      | 0.5 - 1 µg/m³                                                  | +             | +       |  |  |
| 3     | 10-50 million           | 3      | 0.2 – 0.5<br>μg/m <sup>3</sup>                                 | Medium (M)    | 2-5     |  |  |
| 2     | 50-100<br>million       | 2      | 0 - 0.2 µg/m³                                                  |               |         |  |  |
| 1     | >100million             | 1      | 0 µg/m³                                                        | ↓<br>Long (L) | ↓<br>>5 |  |  |

We therefore applied the criteria contained within this matrix to each of our actions within our Action Plan within previous Annual Status Reports and have continued using this matrix in our 2020 Annual Status Report. This comparison is detailed within Table 2.2. We note that this matrix provides an indicative reduction of NO<sub>2</sub>. Clearly the highest scoring impacts are the most effective in improving air quality and moving towards compliance with the air quality objectives in the Borough. Table 2.2 below therefore details the progress with actions over the past year.

 Table 2.2 – Progress on Measures to Improve Air Quality

| Measure<br>No. | Measure                                                                                                         | Category                                         | Classification                                                                                                                                  | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved                                    | Funding<br>Source                                                                                                       | DEFRA<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure Status | Reduction<br>in<br>Pollutant /<br>Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                                                             | Progress to Date                                                                                                                                                                                                                                                                                                                   | Comments / Barriers to Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|---------------------------------|----------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | Carriageway<br>Improvements                                                                                     | Traffic<br>Management                            | UTC,<br>Congestion<br>management,<br>traffic<br>reduction                                                                                       | 2018                          | 2021                                        | LA Highways<br>and Major<br>Projects<br>departments          | Funding<br>from<br>Sheffield<br>City<br>Region<br>Infrastructu<br>re Fund                                               | NO                              | Funded            | £1 million -<br>£10 million     | Implementation | 4, but<br>scheme<br>specific                                  | Date of completion                                                                                          | Commencement of<br>construction of the<br>scheme                                                                                                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2              | Barnsley Bus<br>Agreement                                                                                       | Vehicle Fleet<br>Efficiency                      | Promoting Low<br>Emission<br>Public<br>Transport                                                                                                | 2016                          | 2022                                        | LA Transport<br>Dept. and<br>private<br>company              | Private<br>funding<br>source                                                                                            | NO                              | Funded            | £1 million -<br>£10 million     | Implementation | 3<br>(estimated<br>)                                          | Uptake in Euro<br>VI                                                                                        | Uptake in Euro VI<br>buses, target 2022<br>49% or better.<br>2016/17 - 14%.<br>2017/18 18%.<br>2018/19 17%, end<br>of 2019 21%                                                                                                                                                                                                     | Potential Impact of Covid-19 and lockdown on fleet<br>renewal. Estimated funding cost due to funding from<br>private source                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3              | Encourage uptake<br>of lower emission<br>vehicles and<br>alternative fuels                                      | Promoting<br>Low Emission<br>Transport           | Procuring<br>alternative<br>Refuelling<br>infrastructure<br>to promote<br>Low Emission<br>Vehicles, EV<br>recharging,<br>Gas fuel<br>recharging | 2019                          | 2021                                        | LA Housing &<br>Energy Dept.                                 | Joint<br>funding<br>from Office<br>for Zero<br>Emissions<br>Vehicles<br>(OZEV)<br>grant<br>award and<br>BMBC<br>funding | NO                              | Funded            | £100k -<br>£500k                | Implementation | 2<br>(estimated<br>)                                          | Date of<br>completion<br>2021                                                                               | BMBC received<br>OZEV funding to<br>deliver 43 dual 7<br>kW EVCPs (on-<br>street charging<br>infrastructure), with<br>match funding also<br>from BMBC. All of<br>the Barnsley<br>Council EV<br>chargepoints and<br>other available<br>public<br>chargepoints are<br>featured on Zap-<br>Map<br>(https://www.zap-<br>map.com/live/) | 2021. BMBC are committed to ensuring charging<br>infrastructure in Barnsley meets the needs of<br>residents and visitors and we already have plans to<br>deliver additional rapid and fast charging in the town<br>centre including the new Glassworks multi-storey car<br>park. We will also be developing a project to install<br>further chargepoints across the borough using<br>available government grant funding. For information<br>visit https://www.barnsley.gov.uk/services/roads-<br>travel-and-parking/parking/electric-vehicle-<br>charging-faqs/?opt-in-translate=True |
| 4              | Planning<br>applications - air<br>quality mitigation<br>and assessment                                          | Policy<br>Guidance and<br>Development<br>Control | Air Quality<br>Planning and<br>Policy<br>Guidance                                                                                               | 2015                          | 2032                                        | LA<br>Environmental<br>Health and<br>Planning<br>Departments | BMBC                                                                                                                    | NO                              | Funded            | £10k - 50k                      | Implementation | 2<br>(estimated<br>)                                          | No of Planning<br>Applications<br>where AQ<br>actions have<br>been agreed /<br>conditioned /<br>recommended | 17 planning<br>applications in<br>2016, where AQ<br>actions have been<br>agreed /<br>conditioned /<br>recommended,35<br>in 2017, 40 in<br>2018, 43 in 2019,<br>213 in 2020                                                                                                                                                         | This action will be ongoing as BMBC guidance and planning documents continually are refined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5              | Control over<br>emissions from Part<br>B and A2<br>processes, and act<br>as consultees for<br>Part A1 processes | Other                                            | Other                                                                                                                                           | 2012                          | 2032                                        | LA<br>Environmental<br>Health<br>Department                  | BMBC                                                                                                                    | NO                              | Funded            | £10k - 50k                      | Implementation | 2<br>(estimated<br>)                                          | N/A                                                                                                         | Ongoing                                                                                                                                                                                                                                                                                                                            | We await the Environmental Bill for any potential impacts on this action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6              | Enforcement of<br>Clean Air Act with<br>regards to industrial<br>smoke                                          | Other                                            | Other                                                                                                                                           | 2010                          | 2032                                        | LA<br>Environmental<br>Health<br>Department                  | BMBC                                                                                                                    | NO                              | Funded            | £10k - 50k                      | Implementation | 2<br>(estimated<br>)                                          | N/A                                                                                                         | Ongoing                                                                                                                                                                                                                                                                                                                            | We await the Environmental Bill for any potential impacts on this action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7              | Enforcement of<br>Clean Air Act with<br>regards to domestic<br>smoke                                            | Other                                            | Other                                                                                                                                           | 2010                          | 2032                                        | LA<br>Environmental<br>Health<br>Department                  | BMBC                                                                                                                    | NO                              | Funded            | £10k - 50k                      | Implementation | 2<br>(estimated<br>)                                          | N/A                                                                                                         | Ongoing                                                                                                                                                                                                                                                                                                                            | We await the Environmental Bill for any potential<br>impacts on this action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8              | Investigation of<br>nuisance<br>complaints,<br>including<br>appropriate action<br>to resolve the<br>complaint   | Other                                            | Other                                                                                                                                           | 2010                          | 2032                                        | LA<br>Environmental<br>Health<br>Department                  | BMBC                                                                                                                    | NO                              | Funded            | £10k - 50k                      | Implementation | 2<br>(estimated<br>)                                          | N/A                                                                                                         | Ongoing                                                                                                                                                                                                                                                                                                                            | We await the Environmental Bill for any potential impacts on this action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9              | BMBC Fleet<br>improvements                                                                                      | Vehicle Fleet<br>Efficiency                      | Vehicle<br>Retrofitting<br>programmes                                                                                                           | 2016                          | 2025                                        | LA Fleet<br>Operations<br>Department                         | BMBC                                                                                                                    | NO                              | Funded            |                                 | Implementation | 2<br>(estimated<br>)                                          | Number of<br>Electric<br>Vehicles<br>purchased<br>(minimum of<br>30)                                        | 30 procured so far                                                                                                                                                                                                                                                                                                                 | Vehicle Replacement Programme for 2021/22 should see a further 5 added to the Council fleet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Measure<br>No. | Measure                                                                                                                                                                 | Category                                         | Classification                                             | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved                                         | Funding<br>Source                                                                   | DEFRA<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure Status | Reduction<br>in<br>Pollutant /<br>Emission<br>from<br>Measure | Key<br>Performance<br>Indicator                                                                                                                                                      | Progress to Date                                                                                                                                                                   | Comments / Barriers to Implementation                                                                                                                                                                                                                |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------|-------------------|---------------------------------|----------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10             | ECO Stars HDV<br>Fleet Recognition<br>scheme                                                                                                                            | Vehicle Fleet<br>Efficiency                      | Fleet efficiency<br>and<br>recognition<br>schemes          | 2012                          | 2020                                        | LA<br>Transportation<br>Department                                | Local<br>Authority<br>contributio<br>n and<br>DEFRA<br>AQ grant<br>fund award       | YES                             | Funded            | £50k -<br>£100k                 | Completed      | 2<br>(estimated<br>)                                          | No of<br>operators and<br>vehicles<br>signed up to<br>the scheme. In<br>2018-19 These<br>have been<br>submitted to<br>DEFRA in the<br>final report.                                  | 2018-19 ECO<br>Stars business<br>targets met by Aug<br>19. ECO Stars<br>NRMM feasibility<br>study being<br>undertaken, along<br>with Future<br>Business Model                      | Internal discussions on future of Eco Stars scheme<br>and brand                                                                                                                                                                                      |
| 11             | ECO Stars Taxi<br>Fleet Recognition<br>Scheme                                                                                                                           | Vehicle Fleet<br>Efficiency                      | Fleet efficiency<br>and<br>recognition<br>schemes          | 2018                          | 2019                                        | LA<br>Transportation<br>Department                                | DEFRA<br>AQ grant<br>fund award                                                     | YES                             | Funded            | £10k - 50k                      | Completed      | 2<br>(estimated<br>)                                          | No of<br>operators and<br>vehicles<br>signed up to<br>the scheme. In<br>2018-19 These<br>have been<br>submitted to<br>DEFRA in the<br>final report.                                  | Completed                                                                                                                                                                          | Internal discussions on future of Eco Stars scheme<br>and brand                                                                                                                                                                                      |
| 12             | Eco Driver Training<br>Scheme                                                                                                                                           | Vehicle Fleet<br>Efficiency                      | Driver training<br>and ECO<br>driving aids                 | 2019                          | 2020                                        | LA Public<br>Health and<br>Environmental<br>Health<br>Departments | DEFRA<br>AQ grant<br>fund award                                                     | YES                             | Funded            | £50k -<br>£100k                 | Implementation | 2<br>(estimated<br>)                                          | No of<br>operators and<br>drivers signed<br>up to the<br>scheme                                                                                                                      | Scheme was<br>progressing<br>satisfactorily until<br>Covid-19.<br>Following<br>discussions with<br>DEFRA, training is<br>now online                                                | Completion now expected July 2021, with final report to follow this date                                                                                                                                                                             |
| 13             | Barnsley Intelligent<br>Transport Systems                                                                                                                               | Traffic<br>Management                            | UTC,<br>Congestion<br>management,<br>traffic<br>reduction  | 2010                          | 2020                                        | LA Highways<br>Department                                         | BMBC                                                                                | NO                              | Funded            | £1 million -<br>£10 million     | Completed      |                                                               | Installation of<br>intelligent<br>systems<br>(SCOOT /<br>MOVA) within<br>AQMAs.<br>Several of our<br>AQMAs now<br>have SCOOT /<br>MOVA<br>installed, with<br>performance<br>reviewed | Completed                                                                                                                                                                          | Ongoing maintenance along with minor upgrades<br>when funding allows                                                                                                                                                                                 |
| 14             | Encourage cycling<br>and walking<br>(developing<br>infrastructure and<br>campaigns)                                                                                     | Promoting<br>Travel<br>Alternatives              | Intensive<br>active travel<br>campaign &<br>infrastructure | 2022                          | 2023                                        | LA Highways<br>Department                                         | Transformi<br>ng Cities<br>Fund for<br>cycling and<br>walking<br>infrastructu<br>re | NO                              | Funded            | > £10<br>million                | Planning       | 2<br>(estimated<br>)                                          | Completion of schemes                                                                                                                                                                | Successful<br>Sheffield City<br>Region bid for<br>£166 million.<br>Barnsley to submit<br>and implement<br>schemes to this<br>funding with<br>schemes<br>completed by<br>March 2023 | One scheme is designed to enhance walking and cycling routes to retail estates located close to AQMA 4.                                                                                                                                              |
| 15             | Assessment of air<br>quality impact of<br>major traffic<br>schemes                                                                                                      | Policy<br>Guidance and<br>Development<br>Control | Air Quality<br>Planning and<br>Policy<br>Guidance          | 2018                          | 2032                                        | LA<br>Environmental<br>Health<br>Department                       | BMBC                                                                                | NO                              | Funded            | < £10k                          | Implementation | Assessme<br>nt of<br>proposed<br>major road<br>schemes        | Assessment of<br>air quality<br>impact of<br>major road<br>schemes with<br>allotted<br>timescale                                                                                     | Assessments<br>completed to<br>allotted timescales                                                                                                                                 | Ongoing subject to future road schemes                                                                                                                                                                                                               |
| 16             | Promoting Travel<br>Alternatives<br>(Workplace travel<br>planning;<br>encourage/facilitate<br>home-working;<br>personalised travel<br>planning; school<br>travel plans) | Promoting<br>Travel<br>Alternatives              | Workplace<br>Travel<br>Planning                            | 2017                          | 2019                                        | LA<br>Transportation<br>Department                                | BMBC and<br>developer<br>contributio<br>ns                                          | NO                              | Funded            | £10k - 50k                      | Completed      | 2<br>(estimated<br>)                                          | Adoption of<br>Sustainable<br>Travel<br>Supplementary<br>Planning<br>Document<br>(SPD)                                                                                               | Adoption of SPD in 2019                                                                                                                                                            | SPD updated in November 2021, currently in Draft<br>available at<br>https://www.barnsley.gov.uk/media/20294/draft-<br>sustainable-travel-spd-2021.pdf , which now reflects<br>latest developments in provision of electric vehicle<br>charge points, |
| 17             | Anti-idling policy feasibility study                                                                                                                                    | Traffic<br>Management                            | Anti-idling<br>enforcement                                 | 2017                          | 2020                                        | LA Public<br>Health and<br>Environmental                          | BMBC                                                                                | NO                              | Funded            | £10k - 50k                      | Aborted        | 2<br>(estimated<br>)                                          | Number of<br>participating<br>organisations                                                                                                                                          | None                                                                                                                                                                               | This action intended to be renamed anti-idling raising<br>awareness and run campaigns based on this theme.<br>Unable to proceed due to Covid-19 and funding<br>withdrawn to be used elsewhere                                                        |

| Measure<br>No. | Measure | Category | Classification | Year<br>Measure<br>Introduced | Estimated /<br>Actual<br>Completion<br>Year | Organisations<br>Involved | Funding<br>Source | DEFRA<br>AQ<br>Grant<br>Funding | Funding<br>Status | Estimated<br>Cost of<br>Measure | Measure Status | in<br>Pollutant /<br>Emission<br>from<br>Measure | Key<br>Performance<br>Indicator | Progress to Date | Comments / Barriers to Implementation |
|----------------|---------|----------|----------------|-------------------------------|---------------------------------------------|---------------------------|-------------------|---------------------------------|-------------------|---------------------------------|----------------|--------------------------------------------------|---------------------------------|------------------|---------------------------------------|
|                |         |          |                |                               |                                             | Health<br>Departments     |                   |                                 |                   |                                 |                |                                                  |                                 |                  |                                       |

# PM<sub>2.5</sub> – Local Authority Approach to Reducing Emissions and/or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of PM<sub>2.5</sub> (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that PM<sub>2.5</sub> has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

Currently, there is not any monitoring of PM<sub>2.5</sub> completed within Barnsley Metropolitan Borough Council.

However, as recommended within Chapter 7: Estimating PM<sub>2.5</sub> from PM<sub>10</sub> Measurements of LAQM Technical Guidance (TG) (16)<sup>8</sup>, in order to obtain an estimate of PM<sub>2.5</sub> concentrations within Barnsley Metropolitan Borough Council, a national PM<sub>10</sub> to PM<sub>2.5</sub> annual mean conversion factor of 0.7 has been applied to the automatic site 'Barnsley A635 Kendray Roadside' PM<sub>10</sub> annual mean (Table 2.3).

# Table 2.3 Estimated PM2.5 from PM10 measurements for Barnsley MetropolitanBorough Council, 2017 - 2021

| Year                                  | 2017 | 2018 | 2019 | 2020 | 2021 |
|---------------------------------------|------|------|------|------|------|
| PM <sub>10</sub> annual mean (μg/m³)  | 17   | 18   | 20   | 20   | 19   |
| PM <sub>2.5</sub> annual mean (µg/m³) | 11.9 | 12.6 | 14   | 14   | 13.3 |

Furthermore, the current DEFRA background mapping resource<sup>9</sup> can be used to provide maximum background annual mean  $PM_{2.5}$  concentrations within Barnsley Metropolitan Borough Council. The current DEFRA 2021 background maps for Barnsley Metropolitan Borough Council (2018 based) show that all background concentrations of  $PM_{2.5}$  are below the annual mean Air Quality (AQ) objective for  $PM_{2.5}$ . The highest concentration is predicted to be 9.2 µg/m<sup>3</sup> within the 1 x 1km grid square with the centroid grid reference of

<sup>&</sup>lt;sup>8</sup> Available at UK Regions (exc. London) Technical Guidance | LAQM (DEFRA.gov.uk)

<sup>&</sup>lt;sup>9</sup> Available at Background Mapping data for local authorities - 2018 - DEFRA, UK

440500, 408500. This is an area in Grimethorpe, northeast Barnsley, that is surrounded by the A6195 and A628, but is mainly compromised of residential and commercial properties.

The Public Health Outcomes Framework (PHOF) is a Public Health England data tool that has been designed to aid in improving the nation's health and improve the health of the poorest communities faster. For more information, please visit https://fingertips.phe.org.uk/profile/public-health-outcomes-framework.

The PHOF indicator for the fraction of deaths attributable to particulate air pollution in Barnsley Metropolitan Borough Council was 4.7% during 2020 (latest available data), which is below the regional average of 5.0% and national average of 5.6% for 2020. Table 2.3 compares data from Barnsley Metropolitan Borough Council with Yorkshire and the Humber regional area and England, which shows that Barnsley Metropolitan Borough Council fraction of mortality attributable to particulate air pollution has always been lower than the Yorkshire and the Humber region and England, except for 2019 when the region and Barnsley Metropolitan Borough Council were the same.

| Table 2.3 | Comparison of fraction of mortality attributable to particulate air pollution |
|-----------|-------------------------------------------------------------------------------|
| (new meth | nod), 2018 - 2020                                                             |

|      | Barnsley | Yorkshire and the<br>Humber | England |
|------|----------|-----------------------------|---------|
| 2018 | 5.6%     | 6.1%                        | 7.1%    |
| 2019 | 6.6%     | 6.6%                        | 7.1%    |
| 2020 | 4.7%     | 5.0%                        | 5.6%    |

Barnsley Metropolitan Borough Council is taking the following measures to address PM<sub>2.5</sub>:

Barnsley MBC has addressed the reducing emissions of PM<sub>2.5</sub> within the Council's AQAP, updated in 2019. Appendix G of the Council's AQAP includes a further evaluation of actions, including an assessment of actions with regard to their effect of reducing PM<sub>2.5</sub> concentrations, in accordance with Table A.1 of LAQM TG (16), Action Plan Toolbox.

By applying the measures detailed in Table A.1 of LAQM TG (16), all of the actions within the AQAP will assist in reducing PM<sub>2.5</sub> concentrations, including those actions in the AQAP which deal with industrial and domestic emissions, particularly actions five to eight which specifically target domestic and industrial PM<sub>2.5</sub> emissions. These actions are becoming increasingly important in reducing PM<sub>2.5</sub> emissions as domestic emissions have recently

#### LAQM Annual Status Report 2022

been identified as a significant source of PM<sub>2.5</sub> within the recently published Clean Air Strategy. The entire Barnsley Metropolitan Borough Council is a designated 'smoke control area' to help improve air quality and reduce pollution from burning coal, oil or wood as fuel, more information is available at https://www.barnsley.gov.uk/services/pollution/airpollution/.

The Clean Air Strategy, published in 2019, demonstrated further commitment to reducing PM<sub>2.5</sub> concentrations, particularly domestic emissions. Barnsley Metropolitan Borough Council wait for the forthcoming Environment Bill and subsequent clarification of the future role of local authorities and any additional duties in reducing emissions, particularly from domestic sources. Barnsley Metropolitan Borough Council understand that the Environment Bill will become law in 2022. Barnsley Metropolitan Borough Council also understand that the Government intends launching a consultation in early 2022 for a new legal target for PM<sub>2.5</sub> particles, with the further intention of making this law by October 2022.

# 3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

This section sets out the monitoring undertaken within 2021 by Barnsley Metropolitan Borough Council and how it compares with the relevant air quality objectives. In addition, monitoring results are presented for a five-year period between 2017 and 2021 to allow monitoring trends to be identified and discussed.

# **Summary of Monitoring Undertaken**

#### 3.1.1 Automatic Monitoring Sites

Barnsley Metropolitan Borough Council undertook automatic (continuous) monitoring at three sites during 2021. Table A.1 in Appendix A shows the details of the automatic monitoring sites. Please note that in August 2021, Barnsley A628 Pogmoor Roadside (BAR6)<sup>10</sup> site was relocated approximately 5m west to Barnsley A628 Roadside Site 2 (BAR11)<sup>11</sup>, still within the boundary of AQMA 2A, due to the new junction gyratory improvement works being installed in the position of the original monitor.

The Air Quality in England page presents automatic monitoring results for Barnsley Metropolitan Borough Council, with automatic monitoring results also available through the UK-Air website.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C.

Local authorities do not have to report annually on the following pollutants: 1,3 butadiene, benzene, carbon monoxide and lead, unless local circumstances indicate there is a

<sup>&</sup>lt;sup>10</sup> Historic data available at Barnsley A628 Pogmoor Roadside [Closed] Latest Data - Air Quality monitoring service (airqualityengland.co.uk)

<sup>&</sup>lt;sup>11</sup> Available at Barnsley A628 Roadside Site 2 Latest Data - Air Quality monitoring service (airqualityengland.co.uk)

problem. Barnsley Metropolitan Borough Council do not have a requirement to monitor any of these pollutants at this time.

#### 3.1.2 Non-Automatic Monitoring Sites

Barnsley Metropolitan Borough Council undertook non-automatic (i.e. passive) monitoring of NO<sub>2</sub> at 64 sites during 2021. **Table A.2** in Appendix A presents the details of the nonautomatic sites. Please note that all five of 2020 Burton Road diffusion tubes were reallocated in 2021 due to the upcoming AQMA 5 revocation, the five new diffusion tubes locations are now situated along A61 Sheffield Road to aid in identifying any further pollution hotspots and also assist with a potential future dispersion modelling study. Additionally, Table 3.1.1 highlights a further six diffusion tube location changes that occurred throughout the reporting year 2021 and the explanation as to why they occurred.

|    | Existing                                            |     | New                                    |        | Reason for moving                                                                                                                                                                                                                                                 |
|----|-----------------------------------------------------|-----|----------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33 | Westway -<br>Town Centre                            | 33a | 48 Sheffield<br>Road,<br>Barnsley      | Nov-21 | Westway had been well below AQ<br>Objective for several years                                                                                                                                                                                                     |
| 42 | Mottram Street<br>/ Eldon Street                    | 42a | 11 Eldon<br>Street North               | Sep-21 | Relocated due to lamppost being<br>replaced                                                                                                                                                                                                                       |
| 45 | Mexborough<br>Road, Bolton-<br>u-Dearne             | 45a | Dodworth<br>Rd, J37,<br>Outbound       | Sep-21 | Mexborough site was not breaching<br>any AQ Objectives, modelling as part<br>of the planning application, showed<br>this new site would not be a problem,<br>but reassurance modelling has been<br>agreed around several locations of the<br>new gyratory scheme. |
| 51 | Carlton Road<br>(W'fd Road<br>junction)<br>downhill | 51a | Hoyland<br>Common<br>Primary<br>School | Sep-21 | Following large development of at<br>Hoyland, again modelling undertaken<br>shown development will not have an<br>impact, but reassurance modelling has<br>been agreed next to school                                                                             |
| 54 | Langsett                                            | 54a | PPP, Play<br>Area                      | Nov-21 | This have been located on the new gyratory development road, next to a children's play area following reassurance monitoring requests.                                                                                                                            |
| 56 | Langsett                                            | 56a | PPP Play<br>Area                       | Nov-21 | This have been located on the new gyratory development road, next to a children's play area following reassurance monitoring requests.                                                                                                                            |

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) for the diffusion tubes, including bias adjustments and any other adjustments applied (e.g. annualisation and/or distance correction), are included in Appendix C.

#### LAQM Annual Status Report 2022

# **Individual Pollutants**

The air quality monitoring results presented in this section are, where relevant, adjusted for bias, annualisation (where the annual mean data capture is below 75% and greater than 25%), and distance correction. Further details on adjustments are provided in Appendix C.

#### 3.1.3 Nitrogen Dioxide (NO<sub>2</sub>)

**Table A.3** and **Table A.4** in Appendix A compare the ratified and adjusted monitored NO<sub>2</sub> annual mean concentrations for the past five years with the air quality objective of  $40\mu g/m^3$ . Note that the concentration data presented represents the concentration at the location of the monitoring site, following the application of bias adjustment and annualisation, as required (i.e., the values are exclusive of any consideration to fall-off with distance adjustment).

For diffusion tubes, the full 2021 dataset of monthly mean values is provided in Appendix B. Note that the concentration data presented in Table B.1 includes distance corrected values, only where relevant.

Table A.5 in Appendix A compares the ratified continuous monitored NO<sub>2</sub> hourly mean concentrations for the past five years with the air quality objective of 200  $\mu$ g/m<sup>3</sup>, not to be exceeded more than 18 times per year.

#### Non-Automatic NO<sub>2</sub> Analysis

As mentioned above, NO<sub>2</sub> monitoring at Barnsley A628 Pogmoor Roadside (BAR6) was relocated to Barnsley A628 Roadside 2 (BAR11) at the end of August 2021. The data captures for the automatic instrument at each location were 64.7 % and 34.5 %, respectively. Both automatic sites BAR6 and BAR11 were used in the Diffusion Tube Data Processing Tool to derive a combined local adjustment factor of 0.87. This adjustment factor is similar to the value used in the 2021 ASR (0.84).

The national bias adjustment spreadsheet<sup>12</sup> for 2021 and 2020 had only one intercomparison study listed for the diffusion tube supplier (South Yorkshire Air Quality Samplers) and that was for London Marylebone Road. For both years, the adjustment factors were 0.77.

<sup>&</sup>lt;sup>12</sup> Available at <u>National Bias Adjustment Factors | LAQM (DEFRA.gov.uk)</u> (version 03/22)

This was not considered representative for use in Barnsley so the local bias factor was used..

More information regarding the local and national bias adjustment factors is provided in Appendix C.

#### AMQA 1

In line with the previous five years Annual Status Reports (ASRs), the 2021 NO<sub>2</sub> annual mean objective within AQMA 1 has been below the AQ objective for all four diffusion tubes. Maps showing the location of these diffusion tubes are in Appendix D and are considered to be representative exposure throughout the AQMA. **Figure A.1. 2** charts a five-year trend in concentrations, which illustrates a downward trend in NO<sub>2</sub> concentrations, especially throughout 2020 and 2021 due to the ongoing Covid-19 imposed travel restrictions. Noting that diffusion tube site 10 was not changed throughout 2020 due to the pandemic, therefore not included in Figure A.1.1.

In their 2014 autumn statement, the Department for Transport announced proposals to extend the managed motorway scheme along the M1 motorway from Junction 35a to Junction 39, which encompasses the majority of the Barnsley's AQMA No. 1. In 2020, the Department of Transport published its Route Investment Strategy 2020 -2025 (RIS2)<sup>13</sup>. As there will not be any development of a scheme to increase capacity on this section of motorway until after 2025 and monitored concentrations within AQMA 1 continue to be below the annual mean objective for NO2, Barnsley Metropolitan Borough Council are considering revocation of this AQMA, even though any subsequent scheme may move emissions closer to receptors due to the potential for use of the current hard shoulder as a running lane. Barnsley Metropolitan Borough Council recommended in the 2020 ASR that we would subsequently draft a detailed assessment to provide the evidence and justification to revoke this AQMA. This approach was approved when our 2020 ASR was appraised by DEFRA. Unfortunately this detailed assessment has yet to be undertaken, but will be an action for the 2022 ASR.

In undertaking such an assessment Barnsley Metropolitan Borough Council believe that account should be taken of any future scheme which may involve moving emissions closer to receptors by the addition of an all lane running scheme utilising the hard shoulder of the

<sup>&</sup>lt;sup>13</sup> Available at Road Investment Strategy 2 (RIS2): 2020 to 2025 - GOV.UK (www.gov.uk)

motorway. Consequently, we have been seeking Highways England comment regarding this situation, but as yet, have yet to receive their response. This has consequently delayed working on this detailed assessment.

#### AQMA 2A

All diffusion tubes within AQMA 2A recorded concentrations below the NO<sub>2</sub> AQ objective of 40  $\mu$ g/m<sup>3</sup> in 2021, the highest NO<sub>2</sub> concentration occurred at diffusion tube 22 (34.6  $\mu$ g/m<sup>3</sup>), which is 13.5  $\mu$ g/m<sup>3</sup> lower than 2019 NO<sub>2</sub> concentration (pre-Covid-19). **Figure A.1. 3** charts a five-year trend in concentrations, which illustrates that 2021 NO<sub>2</sub> concentrations have increased slightly from 2020 concentrations, though are all still lower than previous years.

Further monitoring is required before revocation can be considered for this AQMA, as the Covid-19 influenced 2020 and 2021 data cannot be used to provide further evidence of compliance of the objective within this AQMA.

#### AQMA 4

**Figure A.1. 4** charts a five-year trend in concentrations, which illustrates that annualised and bias adjusted 2021 NO<sub>2</sub> concentrations for all diffusion tubes are higher than 2020 concentrations, but still significantly lower than previous years concentrations (i.e., pre-Covid-19). Diffusion tubes 41 and 43 annualised and bias adjusted NO<sub>2</sub> concentrations were 51.3  $\mu$ g/m<sup>3</sup> and 47.9  $\mu$ g/m<sup>3</sup>, respectively. The fall off with distance concentrations for diffusion tubes 41 and 43, which predicts the NO<sub>2</sub> concentration at the receptor, are within 10% of the AQ objective, at 37.9  $\mu$ g/m<sup>3</sup> and 38.5  $\mu$ g/m<sup>3</sup> respectively. Diffusion tube 44 has increased slightly to 30.3  $\mu$ g/m<sup>3</sup>.

As discussed in detail within previous ASRs, NO<sub>2</sub> concentrations within AQMA 4 (Harborough Hill Road) are significantly affected by increased emissions due to an uphill gradient of the road.

#### AQMA 5

AQMA 5 is located near to the junction of Rotherham Road and Burton Road on the outskirts of Barnsley town centre. Data from this AQMA has showed compliance for the last eight years, (as distance corrected for exposure in accordance with LAQM TG (16) guidance). This AQMA was discussed at length in our 2020 Annual Status Report. DEFRA's 2020 appraisal agreed that Barnsley Metropolitan Borough Council could proceed to revocation of this AQMA, however revocation was delayed in 2021. The consultation exercise has been completed and this AQMA was successfully revoked in

#### LAQM Annual Status Report 2022

February 2022. Monitoring of NO<sub>2</sub> concentrations within this AQMA will continue to demonstrate ongoing compliance for future years.

As previously mentioned, all five of 2020 Burton Road diffusion tubes were re-allocated in 2021 due to the upcoming AQMA 5 revocation, the five new diffusion tubes locations are now situated along A61 Sheffield Road. The remaining diffusion tube 39 situated within AQMA 5 was below the AQ objective for 2021 (34.8  $\mu$ g/m<sup>3</sup>).

#### AQMA 6

All diffusion tubes within AQMA 6 recorded concentrations below the NO<sub>2</sub> AQ objective of  $40 \ \mu\text{g/m}^3$  in 2021, the highest NO<sub>2</sub> concentration occurred at diffusion tube 8 (36.3  $\mu\text{g/m}^3$ ), which is within 10% of the AQ objective. The fall off with distance for diffusion tube 8 was 33  $\mu\text{g/m}^3$ . **Figure A.1. 6** charts a five-year trend in concentrations, which illustrates that 2021 NO<sub>2</sub> concentrations have increased slightly from 2020 concentrations 2020, except for diffusion tube 2 which is the same as it was in 2020. Though are still, overall, lower than previous years monitoring.

AQMA 6 was declared due to exceedances of both the NO<sub>2</sub> annual mean and 1-hour mean NO<sub>2</sub> objectives. LAQM.TG (16) states that concentrations over 60  $\mu$ g/m<sup>3</sup> are at risk of exceeding the 1-hour NO<sub>2</sub> mean subject to exposure, as was the case in 2017 when diffusion tube 3 and 8 measured 60.9  $\mu$ g/m<sup>3</sup> and 65.4  $\mu$ g/m<sup>3</sup>. In 2021, roadside concentrations did not exceed 60  $\mu$ g/m<sup>3</sup> for the fourth year in succession, which indicates that an exceedance of the 1-hour mean objective (200  $\mu$ g/m<sup>3</sup>) is unlikely at these sites.

Barnsley Metropolitan Borough Council previous ASRs informed on a study undertaken by Highways England to ascertain differences in traffic emissions along the A616 in Langsett with changing traffic flow, partly due to the impact of a junction within the AQMA on traffic emissions (right hand turn causing queuing traffic on an uphill gradient). The aim of this assessment was to determine whether traffic flow restrictions (removal of right-hand turn) at this junction would reduce traffic emissions, and subsequently consider a traffic scheme to address this.

It was concluded that the air quality monitoring data indicated that annual mean NO<sub>2</sub> concentrations are slightly higher when vehicles on the A616 are delayed by other vehicles turning right compared to vehicles that don't experience a delay. This change in concentrations is, however, considered likely to be beyond what could be reasonably monitored in terms of attributing any change to a specific intervention. Given the impact of

# LAQM Annual Status Report 2022

any right turn ban or road closure Highways England have therefore concluded that it would not be proportional to pursue such an intervention.

Further ongoing roadside NO<sub>2</sub> monitoring data are required to assess future trends. However, the 2020 and 2021 data will not provide a true reflection of long-term trends due to the impact of the Covid-19 lockdown on traffic flows. Barnsley Metropolitan Borough Council intend to continue roadside monitoring at Langsett for future years.

Both Highways England and Barnsley Council will continue seeking feasible actions which could be implemented at Langsett, however, this is proving increasingly challenging as the Council consider the viability of actions, such as implementation of the right-hand turn discussed earlier. Highways England have implemented or considered various air quality interventions on their road network (Summary of research projects to improve air quality on or close to the strategic road network), and consideration has been given to applying these to the situation at Langsett. Unfortunately, for various reasons, these actions have been considered unworkable at Langsett.

#### AQMA 7

In 2018, for the first time since declaration of AQMA 7 in 2012, diffusion tube 48 located within this AQMA at the junction of Sheffield Road and Cemetery Road near Barnsley town centre was below 40  $\mu$ g/m<sup>3</sup> (when concentrations were distanced corrected back to nearest residential building façade). In 2019 however, distance corrected concentrations exceeded the annual mean objective within this AQMA. In 2020 and 2021, the NO<sub>2</sub> annual mean (annualised and bias adjusted only) complied with the NO<sub>2</sub> AQ objective of 40 $\mu$ g/m<sup>3</sup> AQ objective, measuring 32.1  $\mu$ g/m<sup>3</sup> and 33.6  $\mu$ g/m<sup>3</sup> respectively.

Maps showing the location of these diffusion tubes are found in Appendix D, whilst **Figure A.1. 7** charts a five-year trend in concentrations.

Barnsley Metropolitan Borough Council also carry out non-automatic NO<sub>2</sub> monitoring out with the AQMAs. In 2021, apart from the aforementioned diffusion tubes within the AQMAs, there were two diffusion tubes that exceeded the NO<sub>2</sub> AQ objective and one diffusion tube that was highlighted as being at risk of exceeding the AQ objective as they measured concentrations within 10% of the NO<sub>2</sub> AQ objective, these were diffusion tube 53 (45  $\mu$ g/m<sup>3</sup>), new 2021 diffusion tube 61 (38.9  $\mu$ g/m<sup>3</sup>) and 62 (42.6  $\mu$ g/m<sup>3</sup>). Distance correction analysis concluded the NO<sub>2</sub> predicted at receptor for diffusion tube 53 is 33.0  $\mu$ g/m<sup>3</sup>, 61  $\mu$ g/m<sup>3</sup> is 20.0 and 62 is 30.4  $\mu$ g/m<sup>3</sup>, which are all below the NO<sub>2</sub> AQ objective.

In the 2020 ASR, Barnsley Metropolitan Borough Council reported on diffusion tube 53, which is located at roadside on the outbound carriageway of the A61 Sheffield Road between the Alhambra Roundabout and the junction with the A635 Taylor Row (Doncaster Road), Barnsley town centre (see maps in Appendix D). A potential exceedance of the annual mean NO<sub>2</sub> objective was possible at this location in 2019 (as the measured concentration was 59  $\mu$ g/m<sup>3</sup>, distance corrected was 48.4  $\mu$ g/m<sup>3</sup>). Therefore, Barnsley Metropolitan Borough Council proposed to undertake a detailed assessment with a view to declare an additional AQMA. After discussion with the LAQM Helpdesk and further clarification on whether the monitoring location is considered to be representative, it was agreed to, initially, increase monitoring in 2021 within this area to determine any further pollution hot spots and assist any future dispersion modelling studies. Therefore, the five diffusion tubes along Burton Road (from AQMA5) were relocated to Sheffield Road in early 2021. One of the new diffusion tubes is diffusion tube 62, as previously discussed diffusion tube 62 was above the NO<sub>2</sub> AQ objective in 2021 but is predicted to be below the objective at the receptor. More year's data is required to see a trend at these five new locations, as well as more data from a typical traffic flow year (i.e., pre-Covid-19) before Barnsley can proceed with any detailed assessments. As Covid-19 lockdown restrictions continued throughout 2020 and 2021, the Council will await future year measurements to gain insight into a "typical" traffic flow year. In order to better address the issue of relevant exposure at above ground floor height, the Council have identified a suitable location to locate additional diffusion tubes at height, and data is being collected to inform any future decisions made.

#### Automatic NO<sub>2</sub> Analysis

Table A.13 in Appendix A compares the ratified continuous monitored NO<sub>2</sub> annual mean concentrations for the past five years with the air quality objective of 40  $\mu$ g/m<sup>3</sup>, which have consistently been below the objective. Noting that automatic site BAR6 (relocated in August 2021 to BAR 11) lies within AQMA 2A.

Table A.5 in Appendix A compares the ratified continuous monitored NO<sub>2</sub> hourly mean concentrations for the past five years with the air quality objective of 200  $\mu$ g/m<sup>3</sup>, not to be exceeded more than 18 times per year, which have consistently been below this objective.

# 3.1.4 Particulate Matter (PM<sub>10</sub>)

Table A.6 in Appendix A: Monitoring Results compares the ratified and adjusted monitored  $PM_{10}$  annual mean concentrations for the past five years with the air quality objective of  $40\mu g/m^3$ .

Table A.7 in Appendix A compares the ratified continuous monitored  $PM_{10}$  daily mean concentrations for the past five years with the air quality objective of  $50\mu g/m^3$ , not to be exceeded more than 35 times per year.

There have been no exceedances of the annual and 24-hour mean objectives for  $PM_{10}$  for the past 10 years, taking into account that the 24-hour mean objective should not be exceeded more than 35 times per year.

# 3.1.5 Particulate Matter (PM<sub>2.5</sub>)

PM<sub>2.5</sub> monitoring is not currently undertaken by Barnsley Metropolitan Borough Council, please see section *PM*<sub>2.5</sub>–*Local Authority Approach to Reducing Emissions and/or Concentrations*' of this report which details the estimated PM<sub>2.5</sub> concentrations within the Council.

# 3.1.6 Sulphur Dioxide (SO<sub>2</sub>)

**Table A.9** in Appendix A compares the ratified continuous monitored SO<sub>2</sub> concentrations for 2021 with the air quality objectives for SO<sub>2</sub>.

There have been no measured exceedances of the SO<sub>2</sub> 24-hour, 1-hour and 15-minute objectives.

# **Appendix A: Monitoring Results**

# Table A.1 – Details of Automatic Monitoring Sites

| Site ID | Site Name                                                    | Site Type           | X OS<br>Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutants<br>Monitored | In AQMA?<br>Which<br>AQMA? | Monitoring<br>Technique                               | Distance<br>to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance<br>to kerb of<br>nearest<br>road (m)<br><sup>(2)</sup> | Inlet<br>Height (m) |
|---------|--------------------------------------------------------------|---------------------|-------------------------------|--------------------------------|-------------------------|----------------------------|-------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|---------------------|
| BAR9    | Barnsley A635<br>Kendray Roadside                            | Roadside            | 436298                        | 405691                         | PM10                    | No                         | Beta Attenuation                                      | N/A                                                          | 5                                                               | 1.45                |
| BAR6    | Barnsley A628<br>Pogmoor Roadside<br>(closed August<br>2021) | Roadside            | 432684                        | 406173                         | NO2                     | Yes, AQMA<br>2A            | Chemiluminescent                                      | N/A                                                          | 3.5                                                             | 1.7                 |
| BAR11   | Barnsley A628<br>Roadside 2 (began<br>September 2021)        | Roadside            | 432584                        | 406085                         | NO <sub>2</sub>         | Yes, AQMA<br>2A            | Chemiluminescent                                      | N/A                                                          | 7                                                               | 1.8                 |
| BAR3    | Barnsley Gawber                                              | Urban<br>Background | 432525                        | 407475                         | NO2,<br>SO2, O3         | No                         | Chemiluminescent,<br>UV Fluorescence<br>UV Absorption | N/A                                                          | N/A                                                             | 4.0<br>(estimated)  |

#### Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

(2) N/A if not applicable

# Table A.2 – Details of Non-Automatic Monitoring Sites

| Diffusio<br>n Tube<br>ID | Site Name                                   | Site Type               | X OS Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutant<br>s<br>Monitore<br>d | In<br>AQMA<br>?<br>Which<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co<br>located<br>with a<br>Continuou<br>s<br>Analyser? | Tube<br>Heigh<br>t (m) |
|--------------------------|---------------------------------------------|-------------------------|----------------------------|--------------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------|
| 1                        | Midhopestone<br>s 1 Eastbound               | Roadside                | 423621                     | 399817                         | NO2                             | No                                    | 3.0                                                       | 2.5                                                          | No                                                          | 2.9                    |
| 2                        | Langsett 1,<br>Stanley<br>Cottages          | Roadside                | 421102                     | 400496                         | NO2                             | Yes,<br>AQMA<br>6                     | 0.0                                                       | 1.5                                                          | No                                                          | 3.0                    |
| 3                        | Footpath Sign,<br>School House,<br>Langsett | Roadside                | 421143                     | 400481                         | NO2                             | Yes,<br>AQMA<br>6                     | 0.0                                                       | 3.5                                                          | No                                                          | 1.9                    |
| 4                        | Langsett 2,<br>School House                 | Roadside                | 421126                     | 400485                         | NO2                             | Yes,<br>AQMA<br>6                     | N/A                                                       | 2.0                                                          | No                                                          | 2.8                    |
| 5                        | Langsett 3,<br>Café                         | Roadside                | 421291                     | 400482                         | NO2                             | Yes,<br>AQMA<br>6                     | 0.0                                                       | 2.0                                                          | No                                                          | 2.9                    |
| 6                        | Langsett 4,<br>Wagon and<br>Horses          | Roadside                | 421282                     | 400471                         | NO2                             | Yes,<br>AQMA<br>6                     | N/A                                                       | 3.0                                                          | No                                                          | 2.6                    |
| 7                        | Gilbert Hill -<br>Langsett                  | Roadside                | 421117                     | 400501                         | NO2                             | No                                    | 7.5                                                       | 2.5                                                          | No                                                          | 2.6                    |
| 8                        | Langsett -<br>Footpath Sign<br>Bus Stop     | Roadside                | 421215                     | 400475                         | NO2                             | Yes,<br>AQMA<br>6                     | 2.0                                                       | 2.0                                                          | No                                                          | 2.1                    |
| 9                        | Claycliffe Road<br>/ Barugh Lane            | Kerbside                | 431468                     | 408579                         | NO2                             | No                                    | 0.0                                                       | 1.5                                                          | No                                                          | 2.8                    |
| 10                       | Lansdowne<br>Crescent,<br>Darton            | Urban<br>Backgroun<br>d | 430820                     | 409453                         | NO2                             | Yes,<br>AQMA<br>1                     | 0.0                                                       | N/A                                                          | No                                                          | 2.0                    |

| Diffusio<br>n Tube<br>ID | Site Name                                 | Site Type | X OS Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutant<br>s<br>Monitore<br>d | In<br>AQMA<br>?<br>Which<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co<br>located<br>with a<br>Continuou<br>s<br>Analyser? | Tube<br>Heigh<br>t (m) |
|--------------------------|-------------------------------------------|-----------|----------------------------|--------------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------|
| 11                       | 23 Dodworth<br>Road                       | Roadside  | 434000                     | 406292                         | NO2                             | Yes,<br>AQMA<br>2A                    | 0.0                                                       | N/A                                                          | No                                                          | 2.7                    |
| 12                       | 53 Dodworth<br>Road                       | Roadside  | 433910                     | 406290                         | NO2                             | Yes,<br>AQMA<br>2A                    | 0.0                                                       | N/A                                                          | No                                                          | 2.8                    |
| 13                       | Traffic Lights<br>Dodworth<br>Road        | Roadside  | 433820                     | 406278                         | NO2                             | Yes,<br>AQMA<br>2A                    | 2.5                                                       | 2.5                                                          | No                                                          | 2.9                    |
| 14                       | Dodworth<br>Road - SE of<br>Cross Roads   | Roadside  | 432702                     | 406160                         | NO2                             | Yes,<br>AQMA<br>2A                    | 13.0                                                      | 3.0                                                          | No                                                          | 2.7                    |
| 15, 16,<br>17            | Pogmoor<br>Crossroads                     | Roadside  | 432680                     | 406174                         | NO2                             | Yes,<br>AQMA<br>2A                    | N/A                                                       | N/A                                                          | Yes                                                         | 1.7                    |
| 15a,<br>16a,<br>17a      | Barnsley A628<br>Roadside Site<br>2       | Roadside  | 432584                     | 406085                         | NO2                             | Yes,<br>AQMA<br>2A                    | N/A                                                       | 7.0                                                          | Yes                                                         | 1.7                    |
| 18                       | Pogmoor Road                              | Roadside  | 432603                     | 406312                         | NO2                             | No                                    | N/A                                                       | 5.3                                                          | No                                                          | 2.8                    |
| 19                       | Post Office,<br>Crown Hill Rd             | Roadside  | 432481                     | 406068                         | NO2                             | Yes,<br>AQMA<br>2A                    | 0.0                                                       | N/A                                                          | No                                                          | 2.8                    |
| 20                       | Dodworth<br>Road -<br>Outbound - LC<br>54 | Roadside  | 432535                     | 406071                         | NO2                             | Yes,<br>AQMA<br>2A                    | 7.5                                                       | 1.5                                                          | No                                                          | 3.0                    |
| 21                       | 305 Dodworth<br>Road                      | Roadside  | 432402                     | 406013                         | NO2                             | Yes,<br>AQMA<br>2A                    | 8.0                                                       | 3.0                                                          | No                                                          | 2.9                    |

| Diffusio<br>n Tube<br>ID | Site Name                                    | Site Type               | X OS Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutant<br>s<br>Monitore<br>d | In<br>AQMA<br>?<br>Which<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co<br>located<br>with a<br>Continuou<br>s<br>Analyser? | Tube<br>Heigh<br>t (m) |
|--------------------------|----------------------------------------------|-------------------------|----------------------------|--------------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------|
| 22                       | 315 Dodworth<br>Rd, Pogmoor                  | Kerbside                | 432351                     | 405985                         | NO2                             | Yes,<br>AQMA<br>2A                    | 11.5                                                      | 2.5                                                          | No                                                          | 2.9                    |
| 23                       | 329 Dodworth<br>Rd, Pogmoor                  | Roadside                | 432281                     | 405951                         | NO2                             | Yes,<br>AQMA<br>2A                    | 8.0                                                       | 2.0                                                          | No                                                          | 3.0                    |
| 24                       | A6135,<br>Hoyland                            | Kerbside                | 435274                     | 400384                         | NO2                             | No                                    | 6.5                                                       | 1.0                                                          | No                                                          | 2.8                    |
| 25                       | A61 Sheffield<br>Road, Birdwell              | Roadside                | 434832                     | 400405                         | NO2                             | No                                    | 3.0                                                       | 1.5                                                          | No                                                          | 2.9                    |
| 26                       | A61 Sheffield<br>Road, Birdwell              | Roadside                | 434820                     | 400421                         | NO2                             | No                                    | 3.0                                                       | 1.5                                                          | No                                                          | 2.8                    |
| 27                       | A61 Sheffield<br>Road, Birdwell              | Roadside                | 434823                     | 400398                         | NO2                             | No                                    | N/A                                                       | N/A                                                          | No                                                          | 2.9                    |
| 28                       | Tankersley<br>School                         | Roadside                | 434652                     | 400231                         | NO2                             | Yes,<br>AQMA<br>1                     | 0.0                                                       | N/A                                                          | No                                                          | 2.8                    |
| 29                       | 5, Moor Lane,<br>Birdwell                    | Urban<br>Backgroun<br>d | 434721                     | 400352                         | NO2                             | Yes,<br>AQMA<br>1                     | 0.0                                                       | N/A                                                          | No                                                          | 2.7                    |
| 30                       | Cock Inn,<br>Birdwell                        | Roadside                | 434309                     | 401032                         | NO2                             | Yes,<br>AQMA<br>1                     | 0.0                                                       | N/A                                                          | No                                                          | 2.6                    |
| 31                       | Sheffield Rd -<br>LC 32                      | Roadside                | 434595                     | 401107                         | NO2                             | No                                    | 3.5                                                       | 2.5                                                          | No                                                          | 3.0                    |
| 32                       | Sheffield Rd –<br>Chapel Street,<br>Birdwell | Roadside                | 434559                     | 401274                         | NO2                             | No                                    | 0.0                                                       | N/A                                                          | No                                                          | 2.8                    |

| Diffusio<br>n Tube<br>ID | Site Name                                       | Site Type | X OS Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutant<br>s<br>Monitore<br>d | In<br>AQMA<br>?<br>Which<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co<br>located<br>with a<br>Continuou<br>s<br>Analyser? | Tube<br>Heigh<br>t (m) |
|--------------------------|-------------------------------------------------|-----------|----------------------------|--------------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------|
| 33                       | Westway -<br>Town Centre                        | Roadside  | 434251                     | 406199                         | NO2                             | No                                    | 0.0                                                       | N/A                                                          | No                                                          | 2.9                    |
| 33a                      | 48 Sheffield<br>Road,<br>Barnsley               | Roadside  | 434831                     | 406001                         | NO2                             | No                                    | 5.0                                                       | 3.0                                                          | No                                                          | 2.8                    |
| 34                       | Wakefield<br>Road / Carlton<br>Road             | Roadside  | 435011                     | 408281                         | NO2                             | No                                    | 7.0                                                       | 2.0                                                          | No                                                          | 3.5                    |
| 35                       | Wakefield<br>Road - South<br>of Carlton<br>Road | Roadside  | 435027                     | 408190                         | NO2                             | No                                    | N/A                                                       | N/A                                                          | No                                                          | 2.8                    |
| 36                       | Wakefield<br>Road /<br>Smithies Lane<br>(North) | Roadside  | 435027                     | 408104                         | NO2                             | No                                    | 6.5                                                       | 2.0                                                          | No                                                          | 2.7                    |
| 37                       | Wakefield Rd<br>– app. Burton<br>Rd junc.       | Roadside  | 435174                     | 407499                         | NO2                             | No                                    | 5.8                                                       | 1.7                                                          | No                                                          | 2.8                    |
| 38                       | Old Mill Lane /<br>Honeywell<br>Street          | Kerbside  | 434757                     | 406995                         | NO2                             | No                                    | 3.0                                                       | 0.3                                                          | No                                                          | 2.8                    |
| 39                       | Burton Road –<br>app<br>Rotherham Rd<br>junc.   | Kerbside  | 436072                     | 407320                         | NO2                             | Yes,<br>AQMA<br>5                     | 2.5                                                       | 0.5                                                          | No                                                          | 2.7                    |
| 40                       | Grange Lane,<br>near to Cundy<br>Cross junc.    | Roadside  | 437122                     | 406557                         | NO2                             | No                                    | 6.0                                                       | 1.4                                                          | No                                                          | 2.8                    |

| Diffusio<br>n Tube<br>ID | Site Name                                    | Site Type               | X OS Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutant<br>s<br>Monitore<br>d | In<br>AQMA<br>?<br>Which<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co<br>located<br>with a<br>Continuou<br>s<br>Analyser? | Tube<br>Heigh<br>t (m) |
|--------------------------|----------------------------------------------|-------------------------|----------------------------|--------------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------|
| 41                       | 49 Harborough<br>Hill Road                   | Roadside                | 434933                     | 406695                         | NO2                             | Yes,<br>AQMA<br>4                     | 8.0                                                       | 2.0                                                          | No                                                          | 2.7                    |
| 42                       | Mottram Street<br>/ Eldon Street             | Roadside                | 434727                     | 406753                         | NO2                             | No                                    | 0.0                                                       | 0.5                                                          | No                                                          | 2.8                    |
| 42a                      | 11 Eldon<br>Street North                     | Kerbside                | 434735                     | 406773                         | NO2                             | No                                    | 4.0                                                       | 0.5                                                          | No                                                          | 2.7                    |
| 43                       | Harborough<br>Hills Road –<br>near to bakery | Roadside                | 434955                     | 406769                         | NO2                             | Yes,<br>AQMA<br>4                     | 5.0                                                       | 2.0                                                          | No                                                          | 2.9                    |
| 44                       | 119<br>Harborough<br>Hills                   | Roadside                | 435049                     | 407047                         | NO2                             | Yes,<br>AQMA<br>4                     | 0.0                                                       | N/A                                                          | No                                                          | 2.9                    |
| 45                       | Mexborough<br>Road, Bolton-<br>u-Dearne      | Urban<br>Backgroun<br>d | 445699                     | 402140                         | NO2                             | No                                    | 0.0                                                       | N/A                                                          | No                                                          | 3.2                    |
| 45a                      | Dodworth Rd,<br>J37, Outbound                | Roadside                | 432280                     | 405928                         | NO2                             | No                                    | 8.1                                                       | 1.8                                                          | No                                                          | 2.9                    |
| 46                       | Tesco, Wwell<br>Lane                         | Kerbside                | 437554                     | 405291                         | NO2                             | No                                    | 4.0                                                       | 0.7                                                          | No                                                          | 3.2                    |
| 47                       | Sheffield Road<br>/ Park Road<br>Xrds        | Roadside                | 434958                     | 405672                         | NO2                             | No                                    | 0.0                                                       | N/A                                                          | No                                                          | 2.8                    |
| 48                       | Sheffield Road<br>/ Cemetery<br>Road Xrds    | Roadside                | 434964                     | 405709                         | NO2                             | Yes,<br>AQMA<br>7                     | 1.5                                                       | 2.0                                                          | No                                                          | 2.7                    |
| 49                       | Doncaster<br>Road, Ardsley                   | Kerbside                | 437528                     | 405675                         | NO2                             | No                                    | 3.9                                                       | 0.5                                                          | No                                                          | 2.8                    |

| Diffusio<br>n Tube<br>ID | Site Name                                           | Site Type | X OS Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutant<br>s<br>Monitore<br>d | In<br>AQMA<br>?<br>Which<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co<br>located<br>with a<br>Continuou<br>s<br>Analyser? | Tube<br>Heigh<br>t (m) |
|--------------------------|-----------------------------------------------------|-----------|----------------------------|--------------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------|
| 50                       | Carlton Road<br>(W'fd Road<br>junction) uphill      | Roadside  | 435062                     | 408244                         | NO2                             | No                                    | 5.5                                                       | 1.5                                                          | No                                                          | 2.8                    |
| 51                       | Carlton Road<br>(W'fd Road<br>junction)<br>downhill | Roadside  | 435049                     | 408229                         | NO2                             | No                                    | 0.0                                                       | 1.3                                                          | No                                                          | 2.4                    |
| 51a                      | Hoyland<br>Common<br>Primary<br>School              | Roadside  | 435486                     | 400218                         | NO2                             | N/A                                   | 6.0                                                       | 1.4                                                          | No                                                          | 2.8                    |
| 52                       | Wakefield<br>Road / Bar<br>Lane junction            | Roadside  | 434112                     | 409625                         | NO2                             | No                                    | 2.8                                                       | 1.6                                                          | No                                                          | 2.8                    |
| 53                       | Sheffield<br>Road, town<br>centre                   | Roadside  | 434809                     | 406023                         | NO2                             | No                                    | 2.5                                                       | 0.3                                                          | No                                                          | 2.7                    |
| 54                       | Langsett                                            | Roadside  | 421053                     | 400489                         | NO2                             | No                                    | N/A                                                       | 3.0                                                          | No                                                          | 2.8                    |
| 54a                      | PPP, Play<br>Area                                   | Roadside  | 432663                     | 406325                         | NO2                             | Yes,<br>AQMA<br>6                     | N/A                                                       | <mark>15.0</mark>                                            | No                                                          | ?                      |
| 55                       | Wombwell<br>Lane, adj. Keel<br>Inn                  | Roadside  | 437369                     | 405456                         | NO2                             | No                                    | 2.4                                                       | 1.6                                                          | No                                                          | 2.7                    |
| 56                       | Langsett                                            | Roadside  | 420982                     | 400495                         | NO2                             | No                                    | N/A                                                       | 1.8                                                          | No                                                          | 2.7                    |
| 56a                      | PPP Play Area                                       | Roadside  | 432628                     | 406311                         | NO2                             | No                                    | N/A                                                       | <mark>12.0</mark>                                            | No                                                          | 2.8                    |
| 57                       | Grange Lane,<br>Stairfoot,<br>northbound            | Roadside  | 437242                     | 405772                         | NO2                             | No                                    | 1.5                                                       | 1.5                                                          | No                                                          | ?                      |

| Diffusio<br>n Tube<br>ID | Site Name                                | Site Type | X OS Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Pollutant<br>s<br>Monitore<br>d | In<br>AQMA<br>?<br>Which<br>AQMA<br>? | Distance to<br>Relevant<br>Exposure<br>(m) <sup>(1)</sup> | Distance to<br>kerb of<br>nearest<br>road (m) <sup>(2)</sup> | Tube Co<br>located<br>with a<br>Continuou<br>s<br>Analyser? | Tube<br>Heigh<br>t (m) |
|--------------------------|------------------------------------------|-----------|----------------------------|--------------------------------|---------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------|
| 58                       | Grange Lane,<br>Stairfoot,<br>southbound | Roadside  | 437250                     | 405813                         | NO2                             | No                                    | 2.3                                                       | 2.3                                                          | No                                                          | 2.8                    |
| 59                       | Entrance to<br>Horizon, sign             | Roadside  | 432876                     | 406260                         | NO2                             | Yes,<br>AQMA<br>2A                    | 52.0                                                      | 3.0                                                          | No                                                          | 2.9                    |
| 60                       | LC41, opp<br>Horizon<br>Entrance         | Roadside  | 432839                     | 406259                         | NO2                             | Yes,<br>AQMA<br>2A                    | 90.0                                                      | 3.0                                                          | No                                                          | 2.1                    |
| 61                       | LC16, Manx<br>Arms. S. Rd                | Roadside  | 434780                     | 406055                         | NO2                             | No                                    | 40.0                                                      | 1.5                                                          | No                                                          | 3.1                    |
| 62                       | LC22, Junc.<br>Quarry St., S.<br>Rd      | Roadside  | 434855                     | 405957                         | NO2                             | No                                    | 5.1                                                       | 1.4                                                          | No                                                          | 3.0                    |
| 63                       | LC35, Smokey<br>Sam's, S. Rd             | Roadside  | 434917                     | 405818                         | NO2                             | No                                    | 0.0                                                       | 4.6                                                          | No                                                          | 2.9                    |
| 64                       | LC32, Lidia<br>Supermarket,<br>S. Rd     | Roadside  | 434933                     | 405781                         | NO2                             | No                                    | 12.0                                                      | 4.6                                                          | No                                                          | 3.2                    |

# Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

(2) N/A if not applicable.

### Table A.3 – Annual Mean NO<sub>2</sub> Monitoring Results: Automatic Monitoring (µg/m<sup>3</sup>)

| Site ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type        | Valid Data Capture<br>for Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data Capture<br>2021 (%) <sup>(2)</sup> | 2017 | 2018 | 2019 | 2020 | 2021 |
|---------|-------------------------------|--------------------------------|------------------|-------------------------------------------------------------------|-----------------------------------------------|------|------|------|------|------|
| BAR11   | 432584                        | 406085                         | Roadside         | 100                                                               | 34.46                                         | -    | -    | -    | -    | 24   |
| BAR3    | 432525                        | 407475                         | Urban Background | 88.9                                                              | 88.9                                          | 16   | 16   | 17   | 12   | 13   |
| BAR6    | 432684                        | 406173                         | Roadside         | 100                                                               | 64.7                                          | 35   | 32   | 32   | 25   | 22.1 |

#### Notes:

The annual mean concentrations are presented as  $\mu$ g/m<sup>3</sup>.

Exceedances of the NO<sub>2</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

All means have been "annualised" as per LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

# Table A.4 – Annual Mean NO<sub>2</sub> Monitoring Results: Non-Automatic Monitoring (µg/m<sup>3</sup>)

| Diffusion<br>Tube ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type        | Valid Data<br>Capture for<br>Monitoring<br>Period (%) | Valid Data<br>Capture<br>2021 (%) | NO          | ₂ Annual Me | an Concent | ration (µg/m³) | )    |
|----------------------|-------------------------------|--------------------------------|------------------|-------------------------------------------------------|-----------------------------------|-------------|-------------|------------|----------------|------|
|                      |                               |                                |                  | Fenoa (76)                                            |                                   | 2017        | 2018        | 2019       | 2020           | 2021 |
| 1                    | 423621                        | 399817                         | Roadside         | 100.0                                                 | 92.3                              | 35.9        | 29.5        | 29.3       | 18.1           | 19.3 |
| 2                    | 421102                        | 400496                         | Roadside         | 100.0                                                 | 92.3                              | 37.4        | 34.5        | 33.8       | 23.5           | 23.5 |
| 3                    | 421143                        | 400481                         | Roadside         | 100.0                                                 | 92.3                              | <u>60.9</u> | 49.5        | 49.0       | 31.2           | 34.4 |
| 4                    | 421126                        | 400485                         | Roadside         | 100.0                                                 | 92.3                              | 57.0        | 48.2        | 48.8       | 31.5           | 34.8 |
| 5                    | 421291                        | 400482                         | Roadside         | 100.0                                                 | 92.3                              | 39.5        | 31.8        | 31.9       | 21.1           | 22.5 |
| 6                    | 421282                        | 400471                         | Roadside         | 100.0                                                 | 92.3                              | 45.1        | 39.3        | 38.8       | 24.2           | 27.7 |
| 7                    | 421117                        | 400501                         | Roadside         | 100.0                                                 | 92.3                              | 32.7        | 28.5        | 28.3       | 18.6           | 18.8 |
| 8                    | 421215                        | 400475                         | Roadside         | 100.0                                                 | 92.3                              | <u>65.4</u> | 55.7        | 55.6       | 36.2           | 36.3 |
| 9                    | 431468                        | 408579                         | Kerbside         | 45.0                                                  | 42.3                              | 31.9        | 27.7        | 31.7       | 19.2           | 20.0 |
| 10                   | 430820                        | 409453                         | Urban Background | 36.0                                                  | 34.6                              | 26.9        | 22.2        | 24.4       | -              | 17.1 |
| 11                   | 434000                        | 406292                         | Roadside         | 100.0                                                 | 92.3                              | 38.5        | 35.0        | 39.1       | 26.5           | 29.1 |
| 12                   | 433910                        | 406290                         | Roadside         | 100.0                                                 | 92.3                              | 41.8        | 38.9        | 38.9       | 25.3           | 29.0 |

| 13               | 433820 | 406278 | Roadside | 100.0 | 92.3 | 43.9 | 39.0 | 43.3 | 29.3 | 31.8 |
|------------------|--------|--------|----------|-------|------|------|------|------|------|------|
| 14               | 432702 | 406160 | Roadside | 100.0 | 92.3 | 44.4 | 39.4 | 40.5 | 26.6 | 29.7 |
| 15, 16,<br>17    | 432680 | 406174 | Roadside | 100.0 | 57.7 | 32.6 | 33.6 | 31.9 | 24.6 | 26.6 |
| 15a,<br>16a, 17a | 432584 | 406085 | Roadside | 100.0 | 34.6 | -    | -    | -    | -    | 21.3 |
| 18               | 432603 | 406312 | Roadside | 100.0 | 92.3 | 34.1 | 27.6 | 30.3 | 16.2 | 17.3 |
| 19               | 432481 | 406068 | Roadside | 100.0 | 92.3 | 28.7 | 25.7 | 27.2 | 18.1 | 19.1 |
| 20               | 432535 | 406071 | Roadside | 82.0  | 75.0 | 40.9 | 37.0 | 39.6 | 29.3 | 31.0 |
| 21               | 432402 | 406013 | Roadside | 100.0 | 92.3 | 49.1 | 45.8 | 46.2 | 29.5 | 31.8 |
| 22               | 432351 | 405985 | Kerbside | 100.0 | 92.3 | 50.0 | 44.2 | 48.1 | 32.6 | 34.6 |
| 23               | 432281 | 405951 | Roadside | 100.0 | 92.3 | 52.0 | 43.4 | 47.0 | 28.9 | 31.5 |
| 24               | 435274 | 400384 | Kerbside | 100.0 | 92.3 | 40.0 | 30.2 | 30.3 | 20.6 | 24.4 |
| 25               | 434832 | 400405 | Roadside | 100.0 | 92.3 | 40.2 | 34.3 | 38.6 | 26.0 | 32.4 |
| 26               | 434820 | 400421 | Roadside | 100.0 | 92.3 | 43.2 | 40.1 | 40.3 | 25.7 | 32.5 |
| 27               | 434823 | 400398 | Roadside | 100.0 | 92.3 | 38.6 | 39.1 | 39.8 | 23.9 | 27.4 |
| 28               | 434652 | 400231 | Roadside | 73.0  | 67.3 | 22.6 | 23.9 | 23.6 | 15.1 | 16.6 |

| 29  | 434721 | 400352 | Urban Background | 100.0 | 92.3 | 32.1        | 27.6 | 28.3        | 17.8 | 19.0 |
|-----|--------|--------|------------------|-------|------|-------------|------|-------------|------|------|
| 30  | 434309 | 401032 | Roadside         | 55.0  | 50.0 | 36.2        | 29.5 | 33.4        | 20.1 | 25.0 |
| 31  | 434595 | 401107 | Roadside         | 91.0  | 82.7 | 31.8        | 29.7 | 29.7        | 19.1 | 21.7 |
| 32  | 434559 | 401274 | Roadside         | 73.0  | 67.3 | 38.5        | 32.8 | 35.5        | 23.0 | 24.7 |
| 33  | 434251 | 406199 | Roadside         | 82.0  | 75.0 | 30.9        | 29.0 | 31.2        | 18.7 | 19.6 |
| 33a | 434831 | 406001 | Roadside         | 100.0 | 17.3 | -           | -    | -           | -    | -    |
| 34  | 435011 | 408281 | Roadside         | 100.0 | 92.3 | 35.2        | 33.1 | 32.2        | 21.6 | 24.3 |
| 35  | 435027 | 408190 | Roadside         | 100.0 | 92.3 | 38.7        | 37.4 | 35.9        | 25.7 | 28.9 |
| 36  | 435027 | 408104 | Roadside         | 100.0 | 92.3 | 43.4        | 40.1 | 40.3        | 27.4 | 31.7 |
| 37  | 435174 | 407499 | Roadside         | 100.0 | 92.3 | 33.4        | 30.2 | 32.3        | 21.0 | 23.7 |
| 38  | 434757 | 406995 | Kerbside         | 100.0 | 92.3 | 43.4        | 40.4 | 37.8        | 24.7 | 29.5 |
| 39  | 436072 | 407320 | Kerbside         | 100.0 | 92.3 | 45.0        | 44.4 | 41.9        | 28.9 | 34.8 |
| 40  | 437122 | 406557 | Roadside         | 91.0  | 84.6 | -           | -    | 42.2        | 30.0 | 35.4 |
| 41  | 434933 | 406695 | Roadside         | 100.0 | 92.3 | <u>68.7</u> | 59.3 | <u>60.3</u> | 42.4 | 51.3 |
| 42  | 434727 | 406753 | Roadside         | 64.0  | 57.7 | 33.6        | 31.4 | 28.1        | 21.9 | 33.2 |

| 42a | 434735 | 406773 | Kerbside         | 100.0 | 34.6 | -           | -    | -    | -    | 28.2 |
|-----|--------|--------|------------------|-------|------|-------------|------|------|------|------|
| 43  | 434955 | 406769 | Roadside         | 100.0 | 92.3 | <u>65.8</u> | 59.7 | 58.9 | 41.4 | 47.9 |
| 44  | 435049 | 407047 | Roadside         | 100.0 | 92.3 | 42.6        | 37.2 | 39.1 | 27.4 | 30.3 |
| 45  | 445699 | 402140 | Urban Background | 50.0  | 7.7  | 24.8        | 21.7 | 22.6 | -    | -    |
| 45a | 432263 | 405951 | Roadside         | 36.0  | 34.6 | -           | -    | -    | -    | 27.3 |
| 46  | 437554 | 405291 | Kerbside         | 100.0 | 92.3 | 48.1        | 38.4 | 42.2 | 29.0 | 29.4 |
| 47  | 434958 | 405672 | Roadside         | 100.0 | 92.3 | 38.6        | 30.3 | 33.5 | 22.5 | 24.9 |
| 48  | 434964 | 405709 | Roadside         | 100.0 | 92.3 | 48.4        | 43.4 | 47.4 | 32.1 | 33.6 |
| 49  | 437528 | 405675 | Kerbside         | 100.0 | 92.3 | 46.4        | 39.0 | 41.9 | 30.2 | 31.2 |
| 50  | 435062 | 408244 | Roadside         | 91.0  | 84.6 | -           | -    | 37.4 | 25.0 | 27.1 |
| 51  | 435049 | 408229 | Roadside         | 9.0   | 7.7  | -           | -    | 31.0 | 20.4 | -    |
| 51a | 435486 | 400218 | Roadside         | 36.0  | 34.6 | -           | -    | -    | -    | 23.8 |
| 52  | 434112 | 409625 | Roadside         | 100.0 | 92.3 | -           | -    | 35.4 | 24.3 | 25.0 |
| 53  | 434809 | 406023 | Roadside         | 100.0 | 92.3 | -           | -    | 59.0 | 38.6 | 45.0 |
| 54  | 421053 | 400489 | Roadside         | 82.0  | 75.0 | -           | -    | -    | 24.1 | 26.4 |

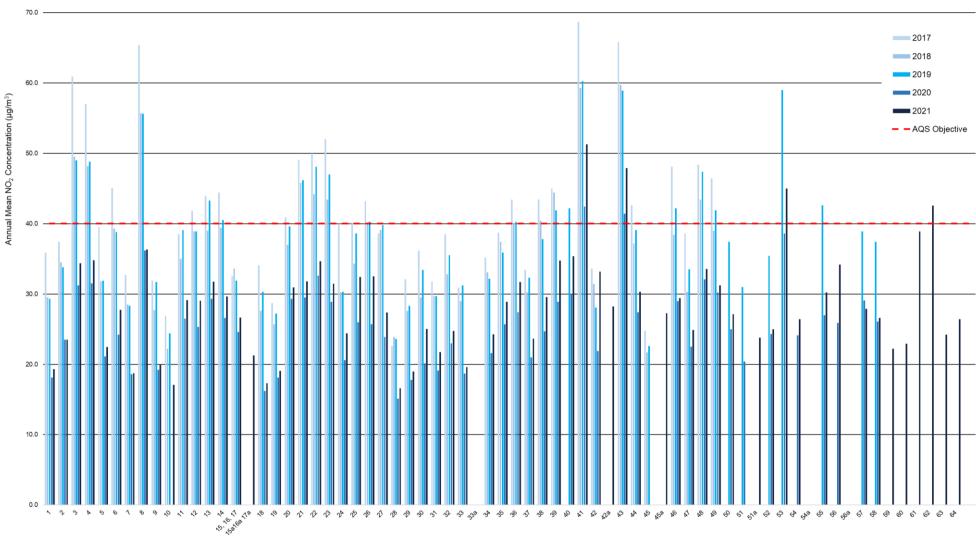
| 54a | 432663 | 406325 | Roadside | 100.0 | 17.3 | - | - | -    | -    | -    |
|-----|--------|--------|----------|-------|------|---|---|------|------|------|
| 55  | 437369 | 405456 | Roadside | 100.0 | 92.3 | - | - | 42.6 | 27.0 | 30.2 |
| 56  | 420982 | 400495 | Roadside | 73.0  | 65.4 | - | - | -    | 25.9 | 34.2 |
| 56a | 432628 | 406311 | Roadside | 100.0 | 17.3 | - | - | -    | -    | -    |
| 57  | 437242 | 405772 | Roadside | 91.0  | 82.7 | - | - | 38.9 | 29.1 | 27.9 |
| 58  | 437250 | 405813 | Roadside | 91.0  | 84.6 | - | - | 37.4 | 26.1 | 26.6 |
| 59  | 432876 | 406260 | Roadside | 100.0 | 92.3 | - | - | -    | -    | 22.2 |
| 60  | 432839 | 406259 | Roadside | 91.0  | 82.7 | - | - | -    | -    | 23.0 |
| 61  | 434780 | 406055 | Roadside | 100.0 | 92.3 | - | - | -    | -    | 38.9 |
| 62  | 434855 | 405957 | Roadside | 100.0 | 92.3 | - | - | -    | -    | 42.6 |
| 63  | 434917 | 405818 | Roadside | 100.0 | 92.3 | - | - | -    | -    | 24.2 |
| 64  | 434933 | 405781 | Roadside | 100.0 | 92.3 | - | - | -    | -    | 26.4 |

#### Notes:

The annual mean concentrations are presented as  $\mu$ g/m<sup>3</sup>.

Exceedances of the NO<sub>2</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

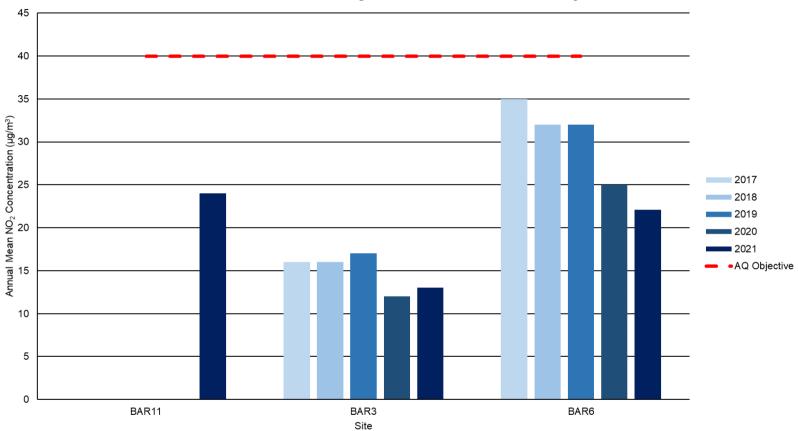
 $NO_2$  annual means exceeding  $60\mu$ g/m<sup>3</sup>, indicating a potential exceedance of the  $NO_2$  1-hour mean objective are shown in <u>bold and</u> <u>underlined</u>.


Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment.

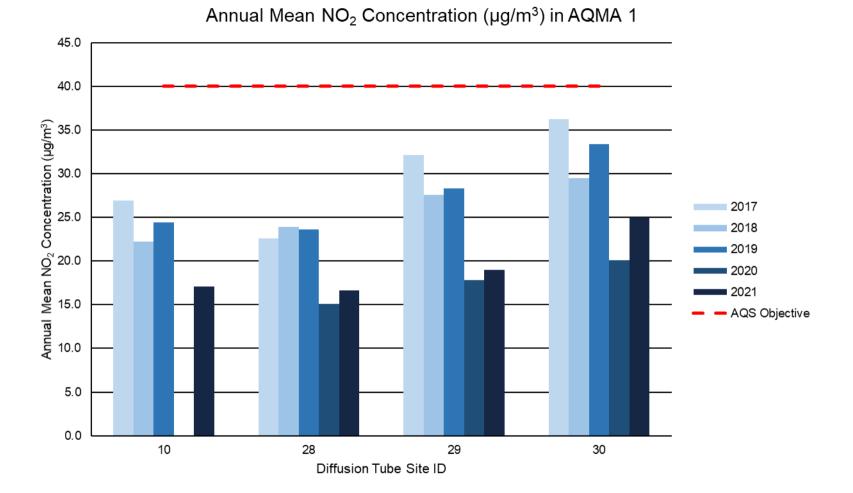
(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

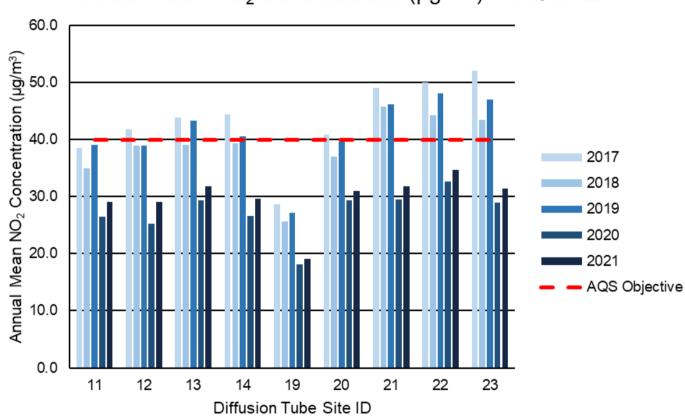

# Figure A.1 – Trends in Annual Mean NO<sub>2</sub> Concentration (µg/m<sup>3</sup>) (Non-Automatic)



Trends in Annual Mean NO2 Concentrations of Non-Automatic Monitoring

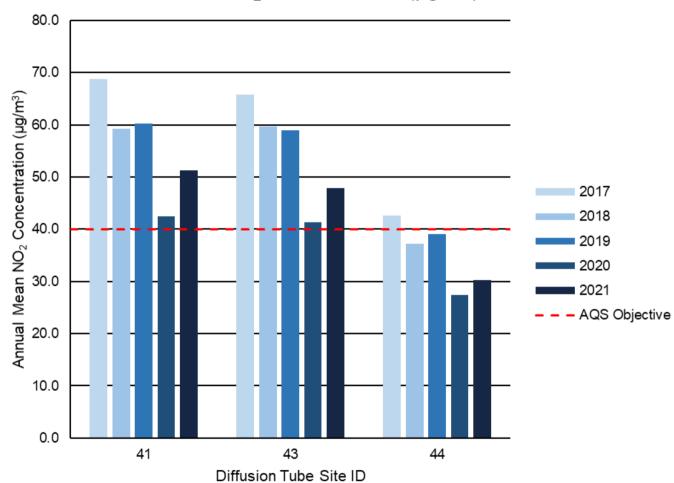

Diffusion Tube Site ID

# Figure A.1. 1 – Trends in Annual Mean NO<sub>2</sub> Concentrations (Automatic)



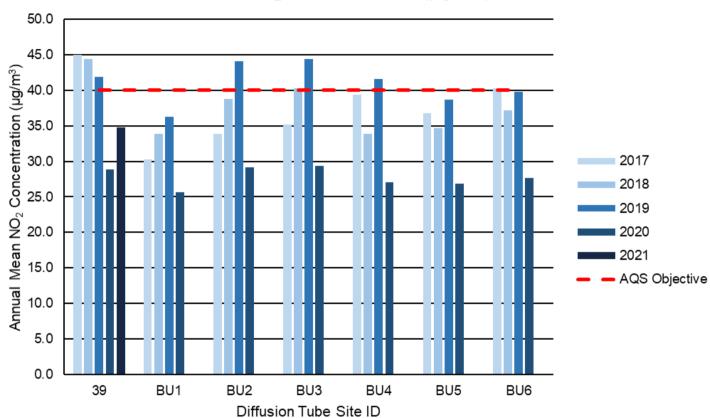

Trends in Annual Mean NO<sub>2</sub> Concentrations of Automatic Monitoring





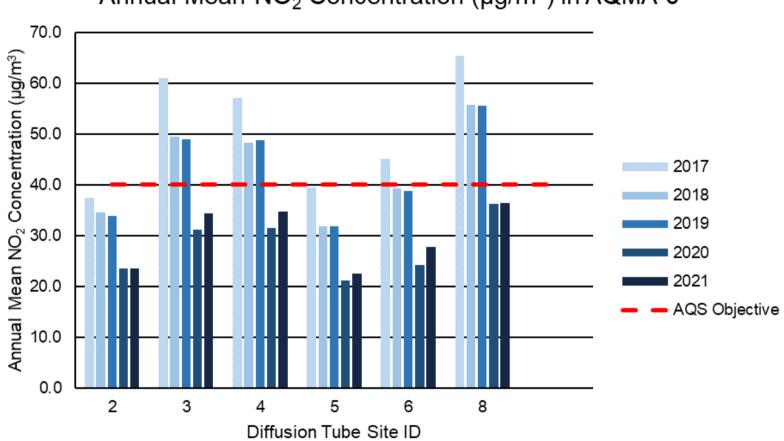

# Figure A.1. 3 – Annual Mean NO<sub>2</sub> Concentration (µg/m<sup>3</sup>) in AQMA 2A




Annual Mean NO<sub>2</sub> Concentration ( $\mu$ g/m<sup>3</sup>) in AQMA 2A

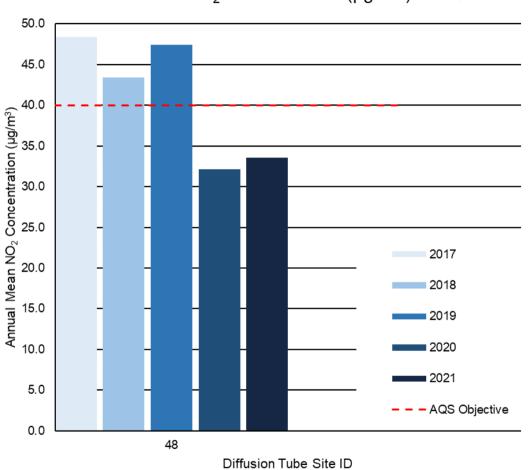
# Figure A.1. 4 – Annual Mean NO<sub>2</sub> Concentration (µg/m<sup>3</sup>) in AQMA 4




Annual Mean NO<sub>2</sub> Concentration (µg/m<sup>3</sup>) in AQMA 4

# Figure A.1. 5 – Annual Mean NO<sub>2</sub> Concentration (µg/m<sup>3</sup>) in AQMA 5




Annual Mean NO<sub>2</sub> Concentration (µg/m<sup>3</sup>) in AQMA 5

# Figure A.1. 6 – Annual Mean NO<sub>2</sub> Concentration (µg/m<sup>3</sup>) in AQMA 6



Annual Mean NO<sub>2</sub> Concentration (µg/m<sup>3</sup>) in AQMA 6

# Figure A.1. 7 – Annual Mean NO<sub>2</sub> Concentration (µg/m<sup>3</sup>) in AQMA 7



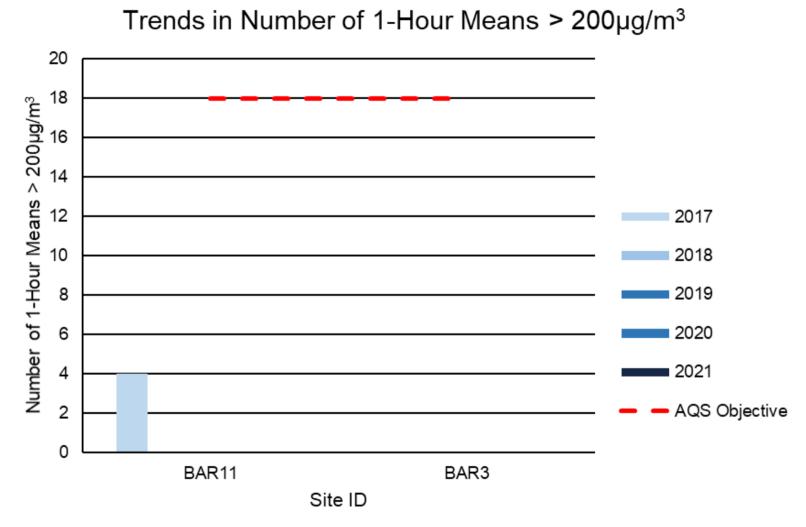
Annual Mean NO<sub>2</sub> Concentration (µg/m3) in AQMA 7

| Table A.5 – 1-Hour Mean NO <sub>2</sub> Monitoring Results | , Number of 1-Hour Means > 200µg/m <sup>3</sup> |
|------------------------------------------------------------|-------------------------------------------------|
|------------------------------------------------------------|-------------------------------------------------|

| Site ID | X OS<br>Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type        | Valid Data<br>Capture for<br>Monitoring<br>Period (%) <sup>(1)</sup> | Valid Data<br>Capture 2021<br>(%) <sup>(2)</sup> | 2017 | 2018 | 2019 | 2020 | 2021    |
|---------|-------------------------------|--------------------------------|------------------|----------------------------------------------------------------------|--------------------------------------------------|------|------|------|------|---------|
| BAR11   | 432680                        | 406174                         | Roadside         | 100                                                                  | 34.46                                            | -    | -    | -    | -    | 0 (105) |
| BAR3    | 432525                        | 407475                         | Urban Background | 88.9                                                                 | 88.9                                             | 0    | 0    | 0    | 0    | 0       |
| BAR6    | 432684                        | 406173                         | Roadside         | 100                                                                  | 64.7                                             | 4    | 0    | 0    | 0    | 0 (99)  |

#### Notes:

Results are presented as the number of 1-hour periods where concentrations greater than 200µg/m<sup>3</sup> have been recorded.


Exceedances of the NO<sub>2</sub> 1-hour mean objective (200µg/m<sup>3</sup> not to be exceeded more than 18 times/year) are shown in **bold**.

If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

# Figure A.2 – Trends in Number of NO<sub>2</sub> 1-Hour Means > 200µg/m<sup>3</sup>

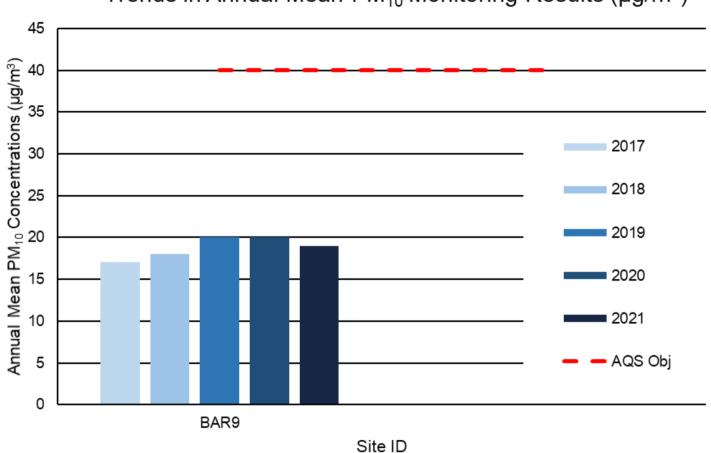


LAQM Annual Status Report 2022

| Site ID | X OS<br>Grid Ref<br>(Easting<br>) | Y OS<br>Grid Ref<br>(Northing<br>) | Site Type | Valid Data<br>Capture for<br>Monitoring Period<br>(%) <sup>(1)</sup> | Valid Data<br>Capture 2021<br>(%) <sup>(2)</sup> | 2017 | 2018 | 2019 | 2020 | 2021 |
|---------|-----------------------------------|------------------------------------|-----------|----------------------------------------------------------------------|--------------------------------------------------|------|------|------|------|------|
| BAR9    | 436298                            | 405691                             | Roadside  | 99.1                                                                 | 99.1                                             | 17   | 18   | 20   | 20   | 19   |

#### Notes:

The annual mean concentrations are presented as  $\mu$ g/m<sup>3</sup>.


Exceedances of the PM<sub>10</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

All means have been "annualised" as per LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

# Figure A.3 – Trends in Annual Mean PM<sub>10</sub> Concentrations



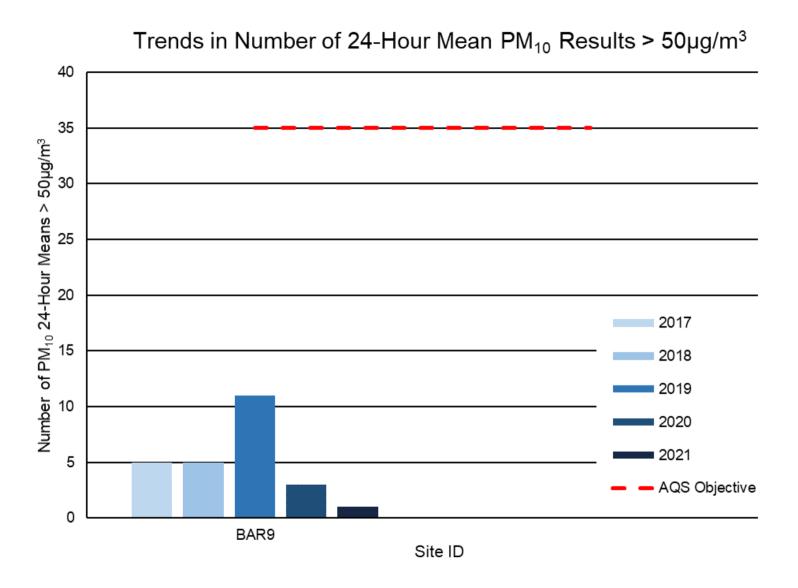
Trends in Annual Mean  $PM_{10}$  Monitoring Results ( $\mu g/m^3$ )

# Table A.7 – 24-Hour Mean PM<sub>10</sub> Monitoring Results, Number of PM<sub>10</sub> 24-Hour Means > 50µg/m<sup>3</sup>

| Site ID | X OS Grid<br>Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Site Type | Valid Data<br>Capture for<br>Monitoring Period<br>(%) <sup>(1)</sup> | Valid Data<br>Capture 2021<br>(%) <sup>(2)</sup> | 2017 | 2018 | 2019 | 2020 | 2021 |
|---------|-------------------------------|--------------------------------|-----------|----------------------------------------------------------------------|--------------------------------------------------|------|------|------|------|------|
| BAR9    | 436298                        | 405691                         | Roadside  | 99.1                                                                 | 99.1                                             | 5    | 5    | 11   | 3    | 1    |

#### Notes:

Results are presented as the number of 24-hour periods where daily mean concentrations greater than 50µg/m<sup>3</sup> have been recorded.


Exceedances of the PM<sub>10</sub> 24-hour mean objective (50µg/m<sup>3</sup> not to be exceeded more than 35 times/year) are shown in **bold**.

If the period of valid data is less than 85%, the 90.4th percentile of 24-hour means is provided in brackets.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

# Figure A.4 – Trends in Number of 24-Hour Mean PM<sub>10</sub> Results > 50µg/m<sup>3</sup>



## Table A.8 – Annual Mean PM<sub>2.5</sub> Monitoring Results (µg/m<sup>3</sup>)

Barnsley Metropolitan Borough Council does not currently undertake PM<sub>2.5</sub> monitoring.

#### Table A.9 – SO<sub>2</sub> 2021 Monitoring Results, Number of Relevant Instances

| Site ID | Grid Ref | Y OS Grid<br>Ref<br>(Northing) | Site Type        | Valid Data<br>Capture for<br>Monitoring Period<br>(%) <sup>(1)</sup> | Valid Data<br>Capture 2021<br>(%) <sup>(2)</sup> | Number of 15<br>minute Means ><br>266µg/m³ | Number of 1<br>hour Means ><br>350µg/m³ | Number of 24<br>hour Means ><br>125µg/m³ |
|---------|----------|--------------------------------|------------------|----------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------|
| BAR3    | 432525   | 407475                         | Urban Background | 97.67                                                                | 97.67                                            | 0                                          | 0                                       | 0                                        |

#### Notes:

Results are presented as the number of instances where monitored concentrations are greater than the objective concentration.

Exceedances of the SO<sub>2</sub> objectives are shown in **bold** (15-min mean = 35 allowed a year, 1-hour mean = 24 allowed a year, 24-hour mean = 3 allowed a year).

If the period of valid data is less than 85%, the relevant percentiles are provided in brackets.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

# Appendix B: Full Monthly Diffusion Tube Results for 2021

# Table B.1 – NO<sub>2</sub> 2021 Diffusion Tube Results (µg/m<sup>3</sup>)

|                      |                               |                                |     |      |      |      | NO <sub>2</sub> Mea | an Conce | entration | s (µg/m³) |      |      |      |      | Simpl       | e Annual Mean                                | (µg/m³)                                            |
|----------------------|-------------------------------|--------------------------------|-----|------|------|------|---------------------|----------|-----------|-----------|------|------|------|------|-------------|----------------------------------------------|----------------------------------------------------|
| Diffusion<br>Tube ID | X OS<br>Grid Ref<br>(Easting) | Y OS Grid<br>Ref<br>(Northing) | Jan | Feb  | Mar  | Apr  | Мау                 | Jun      | Jul       | Aug       | Sep  | Oct  | Νον  | Dec  | Raw<br>Data | Bias<br>Adjusted<br>(0.87) and<br>Annualised | Distance<br>Corrected<br>to<br>Nearest<br>Exposure |
| 1                    | 423621                        | 399817                         |     | 21.8 | 18.6 | 22.5 | 21.3                | 23.4     | 23.0      | 21.0      | 29.8 | 21.6 | 19.6 | 21.8 | 22.2        | 19.3                                         | -                                                  |
| 2                    | 421102                        | 400496                         |     | 27.8 | 18.7 | 27.3 | 27.9                | 24.4     | 27.0      | 27.1      | 40.9 | 27.2 | 21.3 | 27.4 | 27.0        | 23.5                                         | -                                                  |
| 3                    | 421143                        | 400481                         |     | 37.2 | 28.5 | 32.6 | 41.6                | 42.2     | 38.0      | 48.3      | 48.8 | 38.9 | 36.9 | 41.6 | 39.5        | 34.4                                         | -                                                  |
| 4                    | 421126                        | 400485                         |     | 37.5 | 29.4 | 36.8 | 42.4                | 41.4     | 40.0      | 50.3      | 51.9 | 37.1 | 36.2 | 37.1 | 40.0        | 34.8                                         | -                                                  |
| 5                    | 421291                        | 400482                         |     | 26.9 | 17.5 | 26.1 | 29.6                | 21.9     | 29.0      | 27.2      | 29.5 | 25.4 | 24.0 | 27.0 | 25.8        | 22.5                                         | -                                                  |
| 6                    | 421282                        | 400471                         |     | 28.1 | 23.7 | 29.6 | 38.2                | 32.5     | 34.0      | 34.6      | 40.5 | 28.8 | 28.6 | 32.1 | 31.9        | 27.7                                         | -                                                  |
| 7                    | 421117                        | 400501                         |     | 24.5 | 19.0 | 17.3 | 24.1                | 15.4     | 20.0      | 21.7      | 24.5 | 22.6 | 22.8 | 25.5 | 21.6        | 18.8                                         | -                                                  |
| 8                    | 421215                        | 400475                         |     | 40.3 | 33.7 | 41.6 | 39.4                | 39.4     | 42.0      | 47.7      | 54.6 | 38.9 | 39.0 | 42.9 | 41.8        | 36.3                                         | 33.0                                               |
| 9                    | 431468                        | 408579                         |     |      |      |      |                     |          |           | 18.9      | 30.1 | 19.1 | 23.2 | 26.6 | 23.6        | 20.0                                         | -                                                  |
| 10                   | 430820                        | 409453                         |     |      |      |      |                     |          |           |           | 22.7 | 19.1 | 22.0 | 23.2 | 21.7        | 17.1                                         | -                                                  |
| 11                   | 434000                        | 406292                         |     | 35.4 | 30.2 | 34.0 | 31.0                | 30.7     | 32.0      | 36.5      | 39.5 | 32.8 | 31.7 | 34.9 | 33.5        | 29.1                                         | -                                                  |
| 12                   | 433910                        | 406290                         |     | 34.7 | 30.7 | 39.1 | 34.1                | 32.3     | 34.0      | 30.1      | 37.9 | 28.7 | 34.4 | 31.5 | 33.4        | 29.0                                         | -                                                  |
| 13                   | 433820                        | 406278                         |     | 40.9 | 33.0 | 36.8 | 42.5                | 33.1     | 32.0      | 31.0      | 42.2 | 32.5 | 36.0 | 41.6 | 36.5        | 31.8                                         | -                                                  |
| 14                   | 432702                        | 406160                         |     | 35.0 | 32.1 | 31.9 | 37.2                | 30.3     | 28.0      | 34.1      | 37.8 | 32.2 | 38.1 | 38.4 | 34.1        | 29.7                                         | -                                                  |
| 15                   | 432680                        | 406174                         |     | 30.9 | 26.9 | 25.6 | 30.1                | 17.6     | 20.0      | 25.7      |      |      |      |      | -           | -                                            | -                                                  |
| 16                   | 432680                        | 406174                         |     | 32.9 | 27.9 | 27.0 | 30.7                | 22.2     | 22.0      | 24.1      |      |      |      |      | -           | -                                            | -                                                  |
| 17                   | 432680                        | 406174                         |     | 34.1 | 27.3 | 29.8 | 31.9                | 23.0     | 20.0      | 26.7      |      |      |      |      | 26.5        | 26.6                                         | -                                                  |
| 15a                  | 432584                        | 406085                         |     |      |      |      |                     |          |           |           | 26.2 | 25.8 | 25.7 | 31.0 | -           | -                                            | -                                                  |

| Comment                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                |
| No passive monitoring was carried out in Barnsley<br>Metropolitan Borough Council for January 2021<br>due to a supplier issue. |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
| Triplicate Site with 15, 16 and 17 - Annual data provided for 17 only                                                          |
| Triplicate Site with 15, 16 and 17 - Annual data provided for 17 only                                                          |
| Triplicate Site with 15, 16 and 17 - Annual data provided for 17 only                                                          |
| Triplicate Site with 15a, 16a and 17a - Annual data provided for 17a only                                                      |

| 10  |        |        | 1    |      |      |      |      |      |      |      |      |      |      |      |      |   | _ |
|-----|--------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|---|---|
| 16a | 432584 | 406085 |      |      |      |      |      |      |      | 28.2 | 25.2 | 24.8 | 29.1 | -    | -    | - |   |
| 17a | 432584 | 406085 |      |      |      |      |      |      |      | 28.0 | 25.4 | 24.9 | 31.3 | 27.1 | 21.3 | - |   |
| 18  | 432603 | 406312 | 27.0 | 16.3 | 21.9 | 20.7 | 13.9 | 16.0 | 17.1 | 18.8 | 20.4 | 20.6 | 26.5 | 19.9 | 17.3 | - |   |
| 19  | 432481 | 406068 | 30.7 | 17.5 | 20.0 | 22.1 | 18.5 | 17.0 | 17.7 | 24.2 | 22.2 | 21.2 | 29.9 | 21.9 | 19.1 | - |   |
| 20  | 432535 | 406071 | 36.7 | 31.5 |      | 35.7 |      | 29.0 | 31.5 | 48.4 | 35.3 | 34.8 | 37.7 | 35.6 | 31.0 | - |   |
| 21  | 432402 | 406013 | 40.5 | 32.1 | 36.7 | 37.1 | 31.3 | 31.0 | 36.3 | 41.6 | 35.2 | 36.4 | 43.8 | 36.5 | 31.8 | - |   |
| 22  | 432351 | 405985 | 41.3 | 35.3 | 35.4 | 43.3 | 33.6 | 35.0 | 35.1 | 52.2 | 45.6 | 36.8 | 44.5 | 39.8 | 34.6 | - |   |
| 23  | 432281 | 405951 | 39.6 | 34.0 | 36.2 | 36.2 | 29.8 | 26.0 | 35.4 | 41.9 | 37.2 | 41.4 | 40.0 | 36.2 | 31.5 | - |   |
| 24  | 435274 | 400384 | 28.2 | 24.2 | 21.8 | 29.2 | 20.6 | 14.0 | 49.1 | 33.6 | 26.7 | 30.8 | 30.8 | 28.1 | 24.4 | - |   |
| 25  | 434832 | 400405 | 41.7 | 27.4 | 40.6 | 35.7 | 32.6 | 25.0 | 66.9 | 42.1 | 31.4 | 30.0 | 36.6 | 37.3 | 32.4 | - |   |
| 26  | 434820 | 400421 | 40.4 | 31.3 | 38.6 | 38.1 | 30.2 | 25.0 | 64.3 | 40.0 | 30.2 | 35.3 | 37.7 | 37.4 | 32.5 | - |   |
| 27  | 434823 | 400398 | 34.6 | 22.7 | 32.3 | 31.7 | 28.0 | 24.0 | 40.8 | 38.4 | 28.5 | 30.4 | 35.1 | 31.5 | 27.4 | - |   |
| 28  | 434652 | 400231 | 26.9 | 14.2 | 20.7 | 19.1 | 17.9 | 16.0 |      |      |      | 15.3 | 20.0 | 18.8 | 16.6 | - |   |
| 29  | 434721 | 400352 | 27.9 | 15.9 | 21.6 | 22.7 | 18.7 | 18.0 | 17.7 | 23.6 | 23.0 | 22.4 | 28.7 | 21.8 | 19.0 | - |   |
| 30  | 434309 | 401032 |      |      |      | 25.3 | 20.4 | 22.0 | 19.8 | 28.3 | 27.5 |      |      | 23.9 | 25.0 | - |   |
| 31  | 434595 | 401107 | 32.9 | 21.7 |      | 24.1 | 18.4 | 19.0 | 23.0 | 32.0 | 25.2 | 24.4 | 28.9 | 25.0 | 21.7 | - |   |
| 32  | 434559 | 401274 | 31.7 | 23.6 | 24.4 | 27.6 |      | 24.0 | 27.8 |      |      | 31.0 | 34.1 | 28.0 | 24.7 | - |   |
| 33  | 434251 | 406199 | 29.9 | 21.8 | 24.3 | 22.7 | 16.9 | 20.0 | 17.5 | 28.0 | 21.7 |      |      | 22.5 | 19.6 | - |   |
| 33a | 434831 | 406001 |      |      |      |      |      |      |      |      |      | 24.9 | 31.1 | -    | -    | - |   |
| 34  | 435011 | 408281 | 38.8 | 30.7 | 26.7 | 26.5 | 22.0 | 22.0 | 23.2 | 31.3 | 23.3 | 30.8 | 31.5 | 27.9 | 24.3 | - |   |
| 35  | 435027 | 408190 | 42.1 | 34.3 | 30.8 | 32.1 | 28.7 | 30.0 | 29.2 | 32.2 | 33.0 | 35.9 | 37.1 | 33.2 | 28.9 | - |   |
| 36  | 435027 | 408104 | 39.6 | 35.2 | 35.0 | 37.9 | 31.7 | 32.0 | 31.5 | 43.5 | 32.6 | 40.1 | 42.0 | 36.5 | 31.7 | - |   |
| 37  | 435174 | 407499 | 31.7 | 28.2 | 28.6 | 26.0 | 23.2 | 24.0 | 14.2 | 30.1 | 25.0 | 34.4 | 34.0 | 27.2 | 23.7 | - |   |

| Triplicate Site with 15a, 16a and 17a - Annual data provided for 17a only |
|---------------------------------------------------------------------------|
| Triplicate Site with 15a, 16a and 17a - Annual data provided for 17a only |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |

| 38  | 434757 | 406995 | 40.0     | 33.4 | 35.9 | 34.4 | 27.0 | 30.0 | 27.6 | 36.2 | 31.5 | 40.0 | 37.8 | 34.0 | 29.5 | -    |   |
|-----|--------|--------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|---|
| 39  | 436072 | 407320 | 42.8     | 34.6 | 44.5 | 39.6 | 41.0 | 43.0 | 37.7 | 43.6 | 32.8 | 39.2 | 40.9 | 40.0 | 34.8 | -    | Ī |
| 40  | 437122 | 406557 | 47.7     | 38.1 | 47.4 | 39.8 | 35.3 | 41.0 | 38.2 |      | 36.0 | 41.6 | 41.5 | 40.7 | 35.4 | -    | T |
| 41  | 434933 | 406695 | 63.3     | 52.5 | 62.0 | 64.5 | 55.5 | 59.0 | 64.4 | 70.7 | 62.0 | 37.0 | 57.6 | 59.0 | 51.3 | 37.9 |   |
| 42  | 434727 | 406753 | 36.4     | 25.8 | 37.5 | 37.6 | 36.0 | 30.0 | 27.6 |      |      |      |      | 33.0 | 33.2 | -    |   |
| 42a | 434735 | 406773 |          |      |      |      |      |      |      | 41.6 | 34.6 | 28.6 | 39.0 | 35.9 | 28.2 | -    |   |
| 43  | 434955 | 406769 | 61.3     | 41.1 | 66.2 | 62.3 | 55.4 | 55.0 | 55.5 | 55.1 | 55.3 | 41.6 | 57.0 | 55.1 | 47.9 | 38.5 |   |
| 44  | 435049 | 407047 | 40.4     | 28.6 | 37.2 | 40.2 | 33.5 | 32.0 | 31.6 | 36.8 | 31.4 | 31.9 | 40.0 | 34.9 | 30.3 | -    |   |
| 45  | 445699 | 402140 |          |      |      |      |      |      |      |      |      | 38.2 |      | -    | -    | -    |   |
| 45a | 432263 | 405951 |          |      |      |      |      |      |      | 26.4 | 31.9 | 42.7 | 38.0 | 34.8 | 27.3 | -    |   |
| 46  | 437554 | 405291 | 37.0     | 30.2 | 35.1 | 36.6 | 28.5 | 31.0 | 30.5 | 36.7 | 36.2 | 28.3 | 42.0 | 33.8 | 29.4 | -    |   |
| 47  | 434958 | 405672 | 33.8     | 21.2 | 20.9 | 30.5 | 24.9 | 24.0 | 28.1 | 23.6 | 29.7 | 43.1 | 35.0 | 28.6 | 24.9 | -    |   |
| 48  | 434964 | 405709 | 29.5     | 32.6 | 39.4 | 40.4 | 32.8 | 38.0 | 43.4 | 51.3 | 33.2 | 37.8 | 46.0 | 38.6 | 33.6 | -    |   |
| 49  | 437528 | 405675 | 39.2     | 30.6 | 41.0 | 39.1 | 28.5 | 36.0 | 40.4 | 36.8 | 33.1 | 26.2 | 44.0 | 35.9 | 31.2 | -    |   |
| 50  | 435062 | 408244 | 37.8     |      | 32.0 | 33.6 | 23.0 | 30.0 | 31.4 | 31.5 | 32.4 | 26.0 | 34.0 | 31.2 | 27.1 | -    |   |
| 51  | 435049 | 408229 | 29.0     |      |      |      |      |      |      |      |      |      |      | -    | -    | -    |   |
| 51a | 435486 | 400218 |          |      |      |      |      |      |      | 31.7 | 32.5 | 21.0 | 36.0 | 30.3 | 23.8 | -    |   |
| 52  | 434112 | 409625 | 34.8     | 22.2 | 33.8 | 33.7 | 21.0 | 24.0 | 25.1 | 34.3 | 26.7 | 26.3 | 34.0 | 28.7 | 25.0 | -    |   |
| 53  | 434809 | 406023 | <br>58.6 | 39.8 | 62.2 | 59.6 | 50.5 | 51.0 | 58.7 | 55.1 | 45.7 | 37.1 | 51.0 | 51.8 | 45.0 | 33.0 |   |
| 54  | 421053 | 400489 | 29.6     | 19.0 | 27.5 | 35.9 | 30.1 | 35.0 | 34.2 | 31.4 | 30.7 |      |      | 30.4 | 26.4 | -    |   |
| 54a | 432663 | 406325 |          |      |      |      |      |      |      |      |      | 26.4 | 25.0 | -    | -    | -    |   |
| 55  | 437369 | 405456 | 32.9     | 29.2 | 36.7 | 36.3 | 31.4 | 33.0 | 36.1 | 43.5 | 28.9 | 35.1 | 39.0 | 34.7 | 30.2 | -    | T |
| 56  | 420982 | 400495 | 34.4     | 20.3 |      | 41.7 | 31.3 | 39.0 | 38.4 | 44.5 | 28.1 |      |      | 34.7 | 34.2 | -    | T |

| <br> |      |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      |      |  |

| 56a | 432628 | 406311 |      |      |      |      |      |      |      |      |      | 23.0 | 27.0 | -    | -    | -    |  |
|-----|--------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| 57  | 437242 | 405772 | 39.4 | 31.3 | 28.8 | 30.0 | 23.1 | 25.0 | 26.6 | 37.9 |      | 33.8 | 45.0 | 32.1 | 27.9 | -    |  |
| 58  | 437250 | 405813 | 40.2 | 28.0 | 34.1 | 28.5 | 23.3 | 26.0 |      | 33.0 | 25.8 | 29.2 | 38.0 | 30.6 | 26.6 | -    |  |
| 59  | 432876 | 406260 | 27.3 | 22.4 | 25.5 | 22.1 | 19.5 | 16.0 | 36.9 | 27.1 | 22.1 | 29.0 | 33.0 | 25.5 | 22.2 | -    |  |
| 60  | 432839 | 406259 | 37.9 | 26.4 | 36.9 | 34.3 | 23.7 | 16.0 | 26.2 | 23.9 | 19.7 | 19.0 |      | 26.4 | 23.0 | -    |  |
| 61  | 434780 | 406055 | 54.0 | 34.4 | 44.4 | 48.4 | 36.7 | 42.0 | 40.4 | 45.4 | 46.2 | 47.0 | 53.0 | 44.7 | 38.9 | 20.0 |  |
| 62  | 434855 | 405957 | 57.7 | 42.0 | 60.6 | 47.6 | 49.9 | 52.0 | 49.7 | 54.6 | 44.0 | 36.1 | 44.0 | 48.9 | 42.6 | 30.4 |  |
| 63  | 434917 | 405818 | 38.9 | 24.6 | 25.3 | 30.3 | 21.3 | 24.0 | 25.1 | 32.3 | 24.1 | 27.6 | 33.0 | 27.9 | 24.2 | -    |  |
| 64  | 434933 | 405781 | 39.6 | 21.2 | 36.4 | 32.0 | 26.7 | 28.0 | 25.8 | 37.5 | 27.4 | 26.7 | 33.0 | 30.4 | 26.4 | -    |  |

#### Notes:

Exceedances of the NO<sub>2</sub> annual mean objective of  $40\mu g/m^3$  are shown in **bold**.

NO<sub>2</sub> annual means exceeding 60µg/m<sup>3</sup>, indicating a potential exceedance of the NO<sub>2</sub> 1-hour mean objective are shown in **bold and underlined**.

See Appendix C for details on bias adjustment and annualisation.

No passive monitoring was carried out in Barnsley Metropolitan Borough Council for January 2021 due to a supplier issue.

# Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

# New or Changed Sources Identified Within Barnsley Metropolitan Borough Council During 2021

Air quality assessments have been undertaken in support of various planning applications in 2021, which have potential to impact on local air quality. In 2021, the following significant planning applications were assessed for air quality impact:

• ...

Barnsley Metropolitan Borough Council has not identified any new sources relating to air quality within the reporting year of 2021.

Additionally, following adoption of the Councils' Local Plan in 2019, the Council has been developing Masterplan Frameworks as Barnsley's Local Plan includes some site allocations which require the production of such a framework. Masterplan frameworks are subject to public consultation and approval by the Council prior to the determination of any planning applications on the affected sites. Air quality impact has been included within these frameworks in order to ensure that this is considered appropriately at subsequent planning stage.

The Council has its own Air Quality and Emissions Good Practice Planning Guidance (https://www.barnsley.gov.uk/media/16257/pdc-2020-mar-bmbc-aqe-technical-planning-guidance-v12.pdf) which requires that air quality impact from future development are reasonably mitigated.

# Additional Air Quality Works Undertaken by Barnsley Metropolitan Borough Council During 2021

Throughout 2021, Barnsley Metropolitan Borough Council has continued with the intention to revoke AQMA 5, successful continuation has allowed the AQMA to pass revocation and will be officially revoked in 2022.

## **QA/QC of Diffusion Tube Monitoring**

Nitrogen dioxide diffusion tubes for 2021 were analysed by the South Yorkshire Air Quality Samplers. This laboratory uses the analytical technique of the grid adsorbent being 50% triethanolamine (TEA) in acetone. Reagents used in the analysis are sulphanilamide and NEDA. The analytical technique used is spectrometry, at a wavelength of 540 nanometres.

South Yorkshire Air Quality Samplers participates in the WASP / AIR PT<sup>14</sup> scheme for nitrogen dioxide and has previously participated within the survey's inter laboratory comparison scheme. The current version was released in March 2021<sup>15</sup>, therefore only includes round AIR PT AR042 for January – March 2021 (100%) results and were determined to be **satisfactory** based upon a z-score of  $\leq \pm 2$ .

The most important factors to be considered when deciding which bias-adjustment factor to use are:

- Tube exposure time (one month)
- Length of the monitoring study (one year)
- QA/QC of the chemiluminescence analyser (carried out locally by Ricardo including data ratification, as part of our "Calibration Club" contract)
- QA/QC of diffusion tubes (AIR PT NO<sub>2</sub>)
- Siting of the co-location study (if roadside tubes are being factored it is important to use a roadside factor)
- Siting of other tubes in the survey

#### **Diffusion Tube Annualisation**

Annualisation is required for any site with data capture less than 75% but greater than 25%. Barnsley Metropolitan Borough Councils 2021 diffusion tube data has been annualised where required using DEFRA's Diffusion Tube Data Processing Tool v2.0, following guidance within Chapter 7 of LAQM.TG (16): NO<sub>x</sub> and NO<sub>2</sub> Monitoring, including the procedure laid out in Box 7.10. The four background continuous monitoring sites within 50 kilometres in order to calculate the annualisation factors were Barnsley Gawber,

<sup>&</sup>lt;sup>14</sup> WASP – Annual Performance Criteria for NO2 Diffusion Tubes (DEFRA.gov.uk)

<sup>&</sup>lt;sup>15</sup> QA QC Framework | LAQM (DEFRA.gov.uk)

Dewsbury Ashworth Grove, Sheffield Tinsley and Leeds Centre. The diffusion tubes sites that required annualisation in 2021 were DT9, DT10, DT 15, DT16, DT17, DT15a, DT16a, DT17a, DT28, DT30, DT32, DT42, DT42a, DT45a, DT51a and DT56. Annualised data is presented in Table C.2 below

#### **Diffusion Tube Bias Adjustment Factors**

The diffusion tube data presented within this ASR have been corrected for bias using an adjustment factor. Bias represents the overall tendency of the diffusion tubes to under or over-read relative to the reference chemiluminescence analyser. LAQM.TG (16) provides guidance with regard to the application of a bias adjustment factor to correct diffusion tube monitoring. Triplicate co-location studies can be used to determine a local bias factor based on the comparison of diffusion tube results with data taken from NO<sub>x</sub>/NO<sub>2</sub> continuous analysers. Alternatively, the national database of diffusion tube co-location surveys provides bias factors for the relevant laboratory and preparation method.

Barnsley Metropolitan Borough Council have applied a combined local bias adjustment factor of 0.87, despite the resulting overall poor data capture from the relocation of the automatic site from BAR6 to BAR11, and subsequently the relocation of the triplicate diffusion tubes. However, the overall diffusion tube precision was found to be "good".

The 2021 national bias factor<sup>16</sup> was **0.77** for 2021, which is notably lower than the local bias adjustment factor that was generated by the Diffusion Tube Data Processing Tool for 2021 (**0.87**), the 2020 (**0.84**) and 2019 (**0.98**) ASR. A summary of bias adjustment factors used by Barnsley Metropolitan Borough Council over the past five years is presented in Table C.1.

**Figure C. 1** shows that the national bias adjustment factor for 2021 and 2020 only had one comparison study available and both years created a national bias adjustment factor of 0.77, which is significantly different to the 2019 national bias adjustment factor of 1.01, when three studies were used in the calculation. As the 2019 to 2020/21 national bias adjustment factors vary so much and the local adjustment factor is more representative of the local authority's air quality, the local bias adjustment factor was chosen.

| Monitoring Year | Local or National | If National, Version of<br>National Spreadsheet | Adjustment Factor |
|-----------------|-------------------|-------------------------------------------------|-------------------|
| 2021            | National          | -                                               | 0.87              |
| 2020            | Local             | -                                               | 0.84              |
| 2019            | Local             | -                                               | 0.98              |
| 2018            | Local             | -                                               | 0.95              |
| 2017            | Local             | -                                               | 1.03              |

#### Figure C. 1. National Bias Adjustment Spreadsheet (03/22)

| National Diffusion Tube                                                                                                                                                                         | Bias Adjus                                                                                                                                                    | tment F                                                         | act                                                            | or Spreadsheet                                                    |                                |                                                              | Spreads                                                         | heet Vers | sion Numbe                            | er: 03/22                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-----------|---------------------------------------|--------------------------------------------|
| Follow the steps below <u>in the correct order</u><br>Data only apply to tubes exposed monthly an<br>Whenever presenting adjusted data, you sho<br>This spreadhseet will be updated every few r | d are not suitable for<br>old state the adjustn                                                                                                               | correcting ind                                                  | lividua<br>ed and                                              | I short-term monitoring periods<br>the version of the spreadsheet | ge their imr                   | nediate use.                                                 |                                                                 | updated   | spreadshe<br>at the end<br>A Helpdesk | of June 2022                               |
| The LAQM Helpdesk is operated on behalf of Defra<br>partners AECOM and the National Physical Labora                                                                                             |                                                                                                                                                               | ninistrations by I                                              | Bureau                                                         | Veritas, in conjunction with contract                             |                                | et maintained l<br>ly Air Quality Co                         | by the National<br>Insultants Ltd.                              | Physical  | Laboratory.                           | Original                                   |
| Step 1: Step 2: Step 3: Step 4:                                                                                                                                                                 |                                                                                                                                                               |                                                                 |                                                                |                                                                   |                                |                                                              |                                                                 |           |                                       |                                            |
| Select the Laboratory that Analyses Your Tubes<br>from the Drop-Down List                                                                                                                       | the Drop-Down List Down List Down List Where there is more than one study, use the overall factor <sup>3</sup> shown in blue at the foot of the final column. |                                                                 |                                                                |                                                                   |                                |                                                              |                                                                 |           |                                       |                                            |
| If a laboratory is not shown, we have no data for this laboratory.                                                                                                                              | If a preparation method is<br>ot shown, we have no data<br>for this method at this<br>laboratory.                                                             | lf a year is not<br>shown, we have no<br>data <sup>2</sup>      | lf y                                                           | ou have your own co-location study then see<br>Helpdesk at LAG    |                                |                                                              |                                                                 |           | Air Quality N                         | lanagement                                 |
| Analysed By <sup>1</sup>                                                                                                                                                                        | Method<br>T unde your solection, cheare<br>(All) from the pop-up list                                                                                         | Year <sup>5</sup><br>To undo your<br>relection, choore<br>(All) | Site<br>Type                                                   | Local Authority                                                   | Length of<br>Study<br>(months) | Diffusion<br>Tube Mean<br>Conc. (Dm)<br>(µg/m <sup>s</sup> ) | Automatic<br>Monitor Mean<br>Conc. (Cm)<br>(µg/m <sup>3</sup> ) | Bias (B)  | Tube<br>Precision <sup>®</sup>        | Bias<br>Adjustmen<br>Factor (A)<br>(Cm/Dm) |
| South Yorkshire Air Quality Samplers                                                                                                                                                            | 50% TEA in acetone                                                                                                                                            | 2019                                                            | KS                                                             | Marylebone Road Intercomparison                                   | 12                             | 84                                                           | 65                                                              | 28.7%     | G                                     | 0.78                                       |
| South Yorkshire Air Quality Samplers                                                                                                                                                            | 50% TEA in acetone                                                                                                                                            | 2019                                                            | R                                                              | Barnsley MBC                                                      | 11                             | 33                                                           | 33                                                              | 1.7%      | G                                     | 0.98                                       |
| South Yorkshire Air Quality Samplers                                                                                                                                                            | 50% TEA in acetone                                                                                                                                            | 2019                                                            | SU                                                             | Blaby District Council                                            | 10                             | 23                                                           | 31                                                              | -24.8%    | G                                     | 1.33                                       |
| South Yorkshire Air Quality Samplers                                                                                                                                                            | 50% TEA in acetone                                                                                                                                            | 2020                                                            |                                                                |                                                                   |                                |                                                              |                                                                 |           |                                       |                                            |
| South Yorkshire Air Quality Samplers                                                                                                                                                            | 50% TEA in acetone                                                                                                                                            | 2021                                                            | KS                                                             | Marylebone Road Intercomparison                                   | 11                             | 55                                                           | 42                                                              | 30.5%     | G                                     | 0.77                                       |
| South Yorkshire Air Quality Samplers                                                                                                                                                            | 50% TEA in acetone                                                                                                                                            | 2019                                                            |                                                                | Overall Factor <sup>3</sup> (3 studies)                           |                                |                                                              |                                                                 |           | Jse                                   | 1.01                                       |
| South Yorkshire Air Quality Samplers                                                                                                                                                            | 50% TEA in acetone                                                                                                                                            | 2020                                                            |                                                                | Overall Factor <sup>3</sup> (1 study)                             |                                |                                                              |                                                                 |           | Jse                                   | 0.77                                       |
| South Yorkshire Air Quality Samplers                                                                                                                                                            | 50% TEA in acetone                                                                                                                                            | 2021                                                            | Overall Factor <sup>4</sup> (1 study)         Use         0.77 |                                                                   |                                |                                                              |                                                                 |           |                                       |                                            |

For comparison, **Table C.1 1** highlights the difference in concentrations between using the 2021 national bias adjustment factor of 0.77 and the 2021 Diffusion Tube Data Processing Tool calculated local bias adjustment factor of 0.87 (Table C.3).

#### Table C.1 1 National bias to local bias comparison

|                      |                  |                     | Simple Annual Mean (µg/m³) |                                                    |                                                                     |                                                          |                                                             |  |  |  |  |
|----------------------|------------------|---------------------|----------------------------|----------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|
| Diffusion<br>Tube ID | X OS Grid<br>Ref | Y OS<br>Grid<br>Ref | Raw<br>Data                | Local Bias<br>Adjusted<br>(0.87) and<br>Annualised | Local<br>Bias<br>Distance<br>Corrected<br>to<br>Nearest<br>Exposure | National<br>Bias<br>Adjusted<br>(0.77) and<br>Annualised | National<br>Distance<br>Corrected to<br>Nearest<br>Exposure |  |  |  |  |
| 1                    | 423621           | 399817              | 22.2                       | 19.3                                               | -                                                                   | 17.1                                                     | _                                                           |  |  |  |  |
| 2                    | 421102           | 400496              | 27.0                       | 23.5                                               | -                                                                   | 20.8                                                     | _                                                           |  |  |  |  |
| 3                    | 421143           | 400481              | 39.5                       | 34.4                                               |                                                                     | 30.4                                                     | _                                                           |  |  |  |  |
| 4                    | 421126           | 400485              | 40.0                       | 34.8                                               |                                                                     | 30.8                                                     | _                                                           |  |  |  |  |
| 5                    | 421291           | 400482              | 25.8                       | 22.5                                               |                                                                     | 19.9                                                     | _                                                           |  |  |  |  |
| 6                    | 421282           | 400471              | 31.9                       | 27.7                                               | _                                                                   | 24.6                                                     | _                                                           |  |  |  |  |

| -   | 404447 | 400504 | 04.0 | 40.0 |          | 40.0        |      |
|-----|--------|--------|------|------|----------|-------------|------|
| 7   | 421117 | 400501 | 21.6 | 18.8 | _        | 16.6        | _    |
| 8   | 421215 | 400475 | 41.8 | 36.4 | 33.0     | 32.2        | -    |
| 9   | 431468 | 408579 | 23.6 | 20.1 | -        | 17.7        |      |
| 10  | 430820 | 409453 | 21.7 | 17.1 | _        | 15.1        | =    |
| 11  | 434000 | 406292 | 33.5 | 29.1 | -        | 25.8        | -    |
| 12  | 433910 | 406290 | 33.4 | 29.1 | _        | 25.7        |      |
| 13  | 433820 | 406278 | 36.5 | 31.8 | _        | 28.1        |      |
| 14  | 432702 | 406160 | 34.1 | 29.7 | _        | 26.3        | -    |
| 15  | 432680 | 406174 | -    | -    | _        | -           | -    |
| 16  | 432680 | 406174 | -    | -    | _        | -           | -    |
| 17  | 432680 | 406174 | 26.7 | 23.2 | -        | 20.6        | -    |
| 18  | 432603 | 406312 | 19.9 | 17.3 | _        | 15.3        | _    |
| 19  | 432481 | 406068 | 21.9 | 19.1 | _        | 16.9        | _    |
| 20  | 432535 | 406071 | 35.6 | 31.0 | _        | 27.4        | _    |
| 21  | 432402 | 406013 | 36.5 | 31.8 | _        | 28.1        | _    |
| 22  | 432351 | 405985 | 39.8 | 34.6 |          | 30.7        |      |
| 23  | 432281 | 405951 | 36.2 | 31.5 |          | 27.9        |      |
| 24  | 435274 | 400384 | 28.1 | 24.4 | -        | 21.6        |      |
| 25  | 434832 | 400405 | 37.3 | 32.4 |          | 28.7        |      |
| 26  | 434820 | 400421 | 37.4 | 32.5 |          | 28.8        |      |
| 27  | 434823 | 400398 | 31.5 | 27.4 | -        | 24.2        |      |
| 28  | 434652 | 400231 | 18.8 | 16.6 |          | 14.7        |      |
| 29  | 434721 | 400352 | 21.8 | 19.0 | -        | 16.8        |      |
| 30  | 434309 | 401032 | 23.9 | 25.0 | -        | 22.2        |      |
| 31  | 434595 | 401107 | 25.0 | 21.7 | -        | 19.2        |      |
| 32  | 434559 | 401274 | 28.0 | 24.7 | -        | 21.9        | -    |
| 33  | 434251 | 406199 | 22.5 | 19.6 | -        | 17.3        | -    |
| 33a | 434831 | 406001 | -    | -    | -        | -           | -    |
| 34  | 435011 | 408281 | 27.9 | 24.3 | -        | 21.5        | -    |
| 35  | 435027 | 408190 | 33.2 | 28.9 | -        | 25.6        | =    |
| 36  | 435027 | 408104 | 36.5 | 31.7 | -        | 28.1        |      |
| 37  | 435174 | 407499 | 27.2 | 23.7 | -        | 20.1        |      |
| 37  | 434757 | 407499 | 34.0 | 29.6 | -        | 20.9        | -    |
| 30  | 436072 | 406995 | 40.0 | 34.8 | -        | 30.8        | _    |
| 40  | 430072 | 407320 | 40.0 | 35.4 | -        | 31.3        | _    |
| 40  | 437122 |        |      | 51.3 | 27.0     | <b>45.4</b> |      |
|     |        | 406695 | 59.0 |      | 37.9     |             | 34.3 |
| 42  | 434727 | 406753 | 33.0 | 33.2 | -        | 29.4        | _    |
| 42a | 434735 | 406773 | 35.9 | 28.2 | <u> </u> | 25.0        |      |
| 43  | 434955 | 406769 | 55.1 | 47.9 | 38.5     | 42.4        | 34.6 |
| 44  | 435049 | 407047 | 34.9 | 30.3 | -        | 26.8        |      |
| 45  | 445699 | 402140 | -    | -    | -        | -           | _    |
| 45a | 432263 | 405951 | 34.8 | 27.3 | -        | 24.2        |      |
| 46  | 437554 | 405291 | 33.8 | 29.4 | -        | 26.1        | -    |
| 47  | 434958 | 405672 | 28.6 | 24.9 | -        | 22.0        |      |
| 48  | 434964 | 405709 | 38.6 | 33.6 |          | 29.7        | -    |
| 49  | 437528 | 405675 | 35.9 | 31.2 |          | 27.6        | -    |
| 50  | 435062 | 408244 | 31.2 | 27.1 |          | 24.0        |      |
| 51  | 435049 | 408229 | -    | -    | _        | -           | _    |

|     |        |        |      |      | 1    | 1    |      |
|-----|--------|--------|------|------|------|------|------|
| 51a | 435486 | 400218 | 30.3 | 23.8 | _    | 21.1 | -    |
| 52  | 434112 | 409625 | 28.7 | 25.0 | _    | 22.1 | -    |
| 53  | 434809 | 406023 | 51.8 | 45.0 | 33.0 | 39.9 | 31.2 |
| 54  | 421053 | 400489 | 30.4 | 26.4 | _    | 23.4 | -    |
| 54a | 432663 | 406325 | -    | -    | _    | -    | -    |
| 55  | 437369 | 405456 | 34.7 | 30.2 | _    | 26.7 | -    |
| 56  | 420982 | 400495 | 34.7 | 34.2 | _    | 30.3 | -    |
| 56a | 432628 | 406311 | -    | -    | _    | -    | -    |
| 57  | 437242 | 405772 | 32.1 | 27.9 | _    | 24.7 | -    |
| 58  | 437250 | 405813 | 30.6 | 26.6 | _    | 23.6 | -    |
| 59  | 432876 | 406260 | 25.5 | 22.2 | _    | 19.7 | -    |
| 60  | 432839 | 406259 | 26.4 | 23.0 | _    | 20.3 | -    |
| 61  | 434780 | 406055 | 44.7 | 38.9 | 20*  | 34.4 | -    |
| 62  | 434855 | 405957 | 48.9 | 42.6 | 30.4 | 37.7 | 27.4 |
| 63  | 434917 | 405818 | 27.9 | 24.2 | _    | 21.5 | -    |
| 64  | 434933 | 405781 | 30.4 | 26.4 | _    | 23.4 | -    |

\*Warning: your receptor is more than 20m further from the kerb than your monitor – treat result with caution

When using the local bias adjustment factor (0.87), diffusion tubes 8, 41, 43, 53, 61 and 62 are all highlighted as being above the NO<sub>2</sub> AQ objective or are within 10% of the objective, though once distance corrected they are all below 40  $\mu$ g/m<sup>3</sup>, noting that for diffusion tubes 41 and 43, the distance corrected concentrations are 37.9  $\mu$ g/m<sup>3</sup> and 38.5  $\mu$ g/m<sup>3</sup>, which is still within 10% of the AQ objective. This is different to the concentrations when the national bias adjustment factor (0.77) is used, when only diffusion tubes 41, 43, 53 and 62 are highlighted as being above the NO<sub>2</sub> AQ objective or are within 10% of the objective, though once distance corrected they are all below 40  $\mu$ g/m<sup>3</sup>.

Overall, the maximum increase in annual mean concentration when using the local bias adjustment factor for 2021 data was seen at diffusion tube 41, with an increase of 5.9  $\mu$ g/m<sup>3</sup>, the minimum increase in annual mean concentration was seen at diffusion tube 28, with an increase of 1.9  $\mu$ g/m<sup>3</sup>. The average increase across the diffusion tube network was 3.3  $\mu$ g/m<sup>3</sup>.

#### NO<sub>2</sub> Fall-off with Distance from the Road

Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO<sub>2</sub> concentration at the nearest location relevant for exposure has been estimated using the Diffusion Tube Data Processing Tools (v2.0)<sup>17</sup> NO<sub>2</sub> fall-off

<sup>&</sup>lt;sup>17</sup> Available at Diffusion Tube Data Processing Tool | LAQM (DEFRA.gov.uk)

with distance calculator. Where appropriate, non-automatic annual mean NO<sub>2</sub> concentrations corrected for distance are presented in Table B.1.

Barnsley Metropolitan Borough Council utilised the Diffusion Tube Data Processing Tool and the distance corrected diffusion tube data is available in Table C.4. The diffusion tubes sites that required NO<sub>2</sub> fall-off with distance analysis in 2021 are DT 41, DT43, DT53 and DT62. Please note, the distance correction has only been applied for our monitoring sites where the roadside / kerbside annual mean concentration is greater than  $36\mu g/m^3$ and the sites are not located at a point of relevant exposure (taking the limitations of the calculator into account).

## **QA/QC of Automatic Monitoring**

This section provides the automatic data, which is used to derive the locally derived bias adjustment factor discussed above, live and historic data can be viewed at the Air Quality England website (https://www.airqualityengland.co.uk/). All 2021 data have been ratified.

#### Barnsley A628 Pogmoor Road / Barnsley A628 Roadside 2

| Site                          | Туре     | Address                  | Grid Ref. |
|-------------------------------|----------|--------------------------|-----------|
| Barnsley A628 Pogmoor         | Roadside | Pogmoor Crossroads, A628 | 432684,   |
| Roadside (closed August 2021) |          | Dodworth Road            | 406173    |

Relocated to:

| Site                                            | Туре     | Address            | Grid Ref.         |
|-------------------------------------------------|----------|--------------------|-------------------|
| Barnsley A628 Roadside 2<br>(began August 2021) | Roadside | A628 Dodworth Road | 432675,<br>406179 |

Details of the analyser QA/QC are contained in the table below:

| Site                | A628 Pogmoor Roadside / A628 Roadside 2                                        |  |  |  |
|---------------------|--------------------------------------------------------------------------------|--|--|--|
| Analyser Model      | Thermo Scientific 42i Oxides of Nitrogen analyser                              |  |  |  |
| Logging System      | Internal to Thermo Scientific 42i                                              |  |  |  |
| Calibration Gas     | NO in NO <sub>2</sub>                                                          |  |  |  |
| Routine Calibration | Calibrations undertaken by Barnsley MBC personnel as Local Site Operator (LSO) |  |  |  |

| Daily Zero and Span Check               | Yes                                                                                                                                                                                                                                            |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air Conditioning                        | Yes                                                                                                                                                                                                                                            |
| Service Contract                        | 2 x 6 monthly service, + repair call out (Matts Monitors)                                                                                                                                                                                      |
| Third Party Audit and Data Ratification | Ricardo Energy and Environment as part of<br>Calibration Club $-2 \ge 6$ monthly audits to<br>investigate the analysers, calibration gas mixture<br>and site infrastructure, along with full data<br>ratification and reporting of the dataset |

#### **Barnsley Gawber**

| Site            | Туре             | Address                     | Grid<br>Ref.      |
|-----------------|------------------|-----------------------------|-------------------|
| Barnsley Gawber | Urban Background | Wood View, Gawber, Barnsley | 432524,<br>407478 |

Further details on the location criteria of the Barnsley Gawber site can be found on the UK Air website, https://uk-air.DEFRA.gov.uk/, along with live and historic data.

All 2021 data have been ratified. Details of the analyser QA/QC are contained in the table below:

| Site                                                           | Barnsley Gawber                                                                |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|
| Analyser Model (NO <sub>2</sub> )                              | Thermo Scientific 42i                                                          |
| Analyser Model (SO <sub>2</sub> )                              | Thermo Scientific 42i                                                          |
| Logging System (SO <sub>2</sub> & NO <sub>2</sub> )            | Internal to Thermo Scientific 42i                                              |
| Calibration Gas (NO2)                                          | NO in NO <sub>2</sub>                                                          |
| Calibration Gas (SO2)                                          | SO <sub>2</sub> in air                                                         |
| Routine Calibration (SO <sub>2</sub> & NO <sub>2</sub> )       | Calibrations undertaken by Barnsley MBC personnel as Local Site Operator (LSO) |
| Daily Zero and Span Check (SO <sub>2</sub> & NO <sub>2</sub> ) | Zero air scrubber and permeation tube                                          |

| Air Conditioning (SO <sub>2</sub> & NO <sub>2</sub> ) | Yes                                               |
|-------------------------------------------------------|---------------------------------------------------|
| Service Contract (SO <sub>2</sub> & NO <sub>2</sub> ) | 2 x 6 monthly service and repair call out (ACOEM) |
| Third Party Audit and Data Ratification (SO2 & NO2)   | Ricardo Energy and Environment as part of AURN    |

#### Barnsley A635 Kendray Roadside

| Site                                 | Туре     | Address                      | Grid<br>Ref.      |
|--------------------------------------|----------|------------------------------|-------------------|
| Barnsley A635<br>Kendray<br>Roadside | Roadside | A635 Doncaster Road, Kendray | 436298,<br>405691 |

Automatic monitoring of PM10 using a beta attenuation monitor (BAM) is undertaken at the A635 Kendray Roadside site. live and historic data can be viewed at the Air Quality England website (https://www.airqualityengland.co.uk/).

All 2021 data have been ratified. QA/QC for the Kendray site is detailed below:

| Site                                    | Barnsley A635 Kendray Roadside                                                                                                                                                                                           |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyser Model                          | BAM 1020                                                                                                                                                                                                                 |
| Logging System                          | Internal to BAM                                                                                                                                                                                                          |
| Routine Calibration (filter change)     | Calibrations undertaken by Barnsley MBC<br>personnel as Local Site Operator (LSO),<br>in accordance with manufacturer's specification and<br>AURN procedure.                                                             |
| Daily Zero and Span Check               | Yes                                                                                                                                                                                                                      |
| Air Conditioning                        | Yes                                                                                                                                                                                                                      |
| Service Contract                        | 2 x 6 monthly service & repair call out (Matts Monitors)                                                                                                                                                                 |
| Third Party Audit and Data Ratification | Ricardo Energy and Environment as part of<br>Calibration Club $-2 \times 6$ monthly audits to<br>investigate the analysers and site infrastructure,<br>along with full data ratification and reporting of the<br>dataset |

#### PM<sub>10</sub> Monitoring Adjustment

Automatic monitoring of PM<sub>10</sub> using a beta attenuation monitor (BAM) is undertaken at the A635 Kendray Roadside site. The PM<sub>10</sub> BAM analyser in the automatic is unheated, therefore the PM<sub>10</sub> data reported within this Annual Status Report is multiplied by a correction factor of 0.833 following the LAQM TG (16) method by the QA/QC contractor who undertakes ratification of the Council's PM<sub>10</sub> data.

Live and historic data can be viewed at the Air Quality England website (https://www.airqualityengland.co.uk/).

#### **Automatic Monitoring Annualisation**

All automatic monitoring locations within Barnsley Metropolitan Borough Council recorded data capture for the monitoring period greater than 75% therefore it was not required to annualise any monitoring data. In addition, any sites with a data capture below 25% do not require annualisation.

#### NO<sub>2</sub> Fall-off with Distance from the Road

Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO<sub>2</sub> concentration at the nearest location relevant for exposure has been estimated using the NO<sub>2</sub> fall-off with distance calculator available on the LAQM Support website. Where appropriate, non-automatic annual mean NO<sub>2</sub> concentrations corrected for distance are presented in Table B.1.

No automatic NO<sub>2</sub> monitoring locations within Barnsley Metropolitan Borough Council required distance correction during 2021.

#### Table C.2 – Annualisation Summary (concentrations presented in µg/m<sup>3</sup>)

| Site<br>ID | Annualisation<br>Factor<br>Barnsley<br>Gawber | Annualisation<br>Factor<br>Dewsbury<br>Ashworth<br>Grove | Annualisation<br>Factor<br>Sheffield<br>Tinsley | Annualisation<br>Factor Leeds<br>Centre | Average<br>Annualisation<br>Factor | Raw Data<br>Annual<br>Mean | Annualised<br>Annual<br>Mean | Comments                                                                        |
|------------|-----------------------------------------------|----------------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------|------------------------------|---------------------------------------------------------------------------------|
| 9          | 1.0134                                        | 1.0049                                                   | 0.9666                                          | 0.9236                                  | 0.9772                             | 23.6                       | 23.0                         |                                                                                 |
| 10         | 0.9410                                        | 0.9120                                                   | 0.8958                                          | 0.8616                                  | 0.9026                             | 21.7                       | 19.6                         |                                                                                 |
| 15         | 1.1408                                        | 1.1499                                                   | 1.1473                                          | 1.1856                                  | 1.1559                             | -                          | -                            | Triplicate Site with 15, 16 and 17<br>- Annual data provided for 17 only        |
| 16         | 1.1408                                        | 1.1499                                                   | 1.1473                                          | 1.1856                                  | 1.1559                             | -                          | -                            | Triplicate Site with 15, 16 and 17<br>- Annual data provided for 17 only        |
| 17         | 1.1408                                        | 1.1499                                                   | 1.1473                                          | 1.1856                                  | 1.1559                             | 26.5                       | 30.6                         | Triplicate Site with 15, 16 and 17<br>- Annual data provided for 17 only        |
| 15a        | 0.9410                                        | 0.9120                                                   | 0.8958                                          | 0.8616                                  | 0.9026                             | -                          | -                            | Triplicate Site with 15a, 16a and<br>17a - Annual data provided for<br>17a only |
| 16a        | 0.9410                                        | 0.9120                                                   | 0.8958                                          | 0.8616                                  | 0.9026                             | -                          | -                            | Triplicate Site with 15a, 16a and<br>17a - Annual data provided for<br>17a only |
| 17a        | 0.9410                                        | 0.9120                                                   | 0.8958                                          | 0.8616                                  | 0.9026                             | 27.1                       | 24.5                         | Triplicate Site with 15a, 16a and<br>17a - Annual data provided for<br>17a only |
| 28         | 0.9965                                        | 1.0239                                                   | 1.0123                                          | 1.0380                                  | 1.0177                             | 18.8                       | 19.1                         |                                                                                 |
| 30         | 1.2584                                        | 1.2141                                                   | 1.1945                                          | 1.1522                                  | 1.2048                             | 23.9                       | 28.8                         |                                                                                 |
| 32         | 0.9929                                        | 1.0241                                                   | 1.0149                                          | 1.0241                                  | 1.0140                             | 28.0                       | 28.4                         |                                                                                 |
| 42         | 1.1408                                        | 1.1499                                                   | 1.1473                                          | 1.1856                                  | 1.1559                             | 33.0                       | 38.1                         |                                                                                 |
| 42a        | 0.9410                                        | 0.9120                                                   | 0.8958                                          | 0.8616                                  | 0.9026                             | 35.9                       | 32.4                         |                                                                                 |

| Site<br>ID | Annualisation<br>Factor<br>Barnsley<br>Gawber | Annualisation<br>Factor<br>Dewsbury<br>Ashworth<br>Grove | Annualisation<br>Factor<br>Sheffield<br>Tinsley | Annualisation<br>Factor Leeds<br>Centre | Average<br>Annualisation<br>Factor | Raw Data<br>Annual<br>Mean | Annualised<br>Annual<br>Mean | Comments |
|------------|-----------------------------------------------|----------------------------------------------------------|-------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------|------------------------------|----------|
| 45a        | 0.9410                                        | 0.9120                                                   | 0.8958                                          | 0.8616                                  | 0.9026                             | 34.8                       | 31.4                         |          |
| 51a        | 0.9410                                        | 0.9120                                                   | 0.8958                                          | 0.8616                                  | 0.9026                             | 30.3                       | 27.4                         |          |
| 56         | 1.1601                                        | 1.1427                                                   | 1.1235                                          | 1.1018                                  | 1.1320                             | 34.7                       | 39.3                         |          |

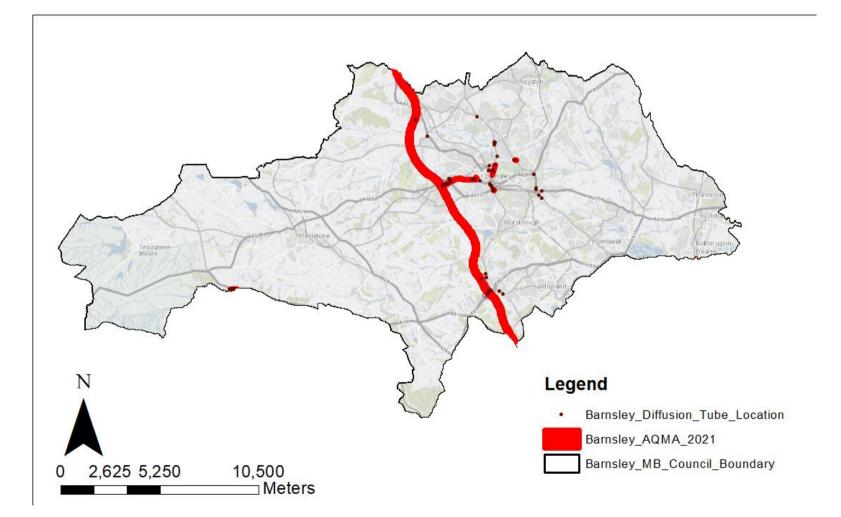
#### Table C.3 – Local Bias Adjustment Calculation

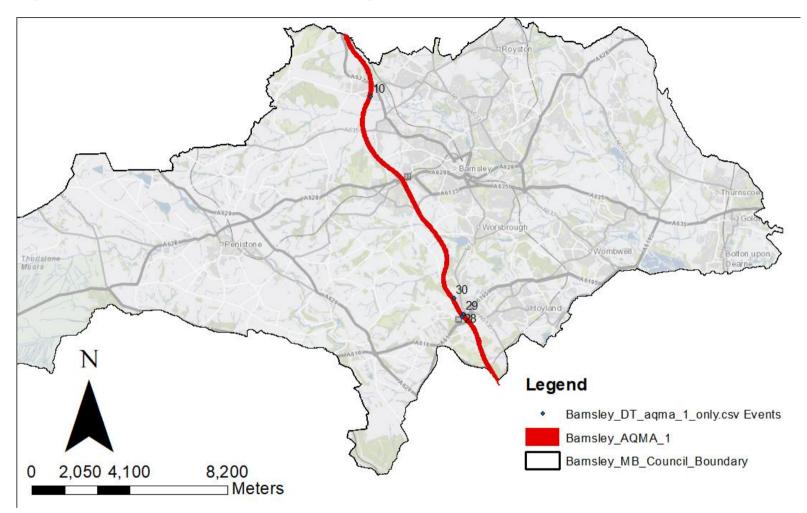
|                                          | Local Bias Adjustment<br>Input 1 | Local Bias Adjustment<br>Input 2 | Local Bias Adjustment<br>Input 3 | Local Bias Adjustment<br>Input 4 | Local Bias Adjustment<br>Input 5 |
|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Periods used to calculate bias           | 7                                | 4                                |                                  |                                  |                                  |
| Bias Factor A                            | 0.87 (0.81 - 0.93)               | 0.87 (0.78 - 0.97)               |                                  |                                  |                                  |
| Bias Factor B                            | 15% (7% - 23%)                   | 15% (3% - 28%)                   |                                  |                                  |                                  |
| Diffusion Tube Mean (µg/m <sup>3</sup> ) |                                  |                                  |                                  |                                  |                                  |
| Mean CV (Precision)                      | 26.5                             | 27.1                             |                                  |                                  |                                  |
| Automatic Mean (µg/m <sup>3</sup> )      | 6.0%                             | 2.8%                             |                                  |                                  |                                  |
| Data Capture                             |                                  |                                  |                                  |                                  |                                  |
| Adjusted Tube Mean (µg/m <sup>3</sup> )  | 23.1                             | 23.5                             |                                  |                                  |                                  |

| Overall Diffusion Tube Precision        | Good Overall Precision    | Good Overall Precision    |
|-----------------------------------------|---------------------------|---------------------------|
| Overall Continuous Monitor Data Capture | Poor Overall Data Capture | Poor Overall Data Capture |

| Local Bias Adjustment Factor | 0.87 | Warning - One or more Co-location studies has Poor Overall Continuous Monitor Data Capture (i.e. <90%).<br>Local Bias Adjustment Factor should be treated with caution. |
|------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### Notes:


Local bias adjustment factor has not been used to bias adjust the 2021 diffusion tube results due to the poor overall continuous monitor data capture. Instead, the national bias adjustment factor has been utilised (0.77)


#### Table C.4 – NO<sub>2</sub> Fall off With Distance Calculations (concentrations presented in $\mu$ g/m<sup>3</sup>)

| Site<br>ID | Distance (m):<br>Monitoring Site<br>to Kerb | Distance (m):<br>Receptor to<br>Kerb | Monitored<br>Concentration<br>(Annualised and<br>Bias Adjusted | Background<br>Concentration | Concentration<br>Predicted at<br>Receptor | Comments                                                                                                     |
|------------|---------------------------------------------|--------------------------------------|----------------------------------------------------------------|-----------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 8          | 2.0                                         | 4.0                                  | 36.3                                                           | 15.9                        | 33.0                                      |                                                                                                              |
| 41         | 2.0                                         | 10.0                                 | 51.3                                                           | 15.9                        | 37.9                                      | Predicted concentration at Receptor within 10% the AQS objective.                                            |
| 43         | 2.0                                         | 7.0                                  | 47.9                                                           | 15.9                        | 38.5                                      | Predicted concentration at Receptor within 10% the AQS objective.                                            |
| 53         | 0.3                                         | 2.8                                  | 45.0                                                           | 11.9                        | 33.0                                      |                                                                                                              |
| 61         | 2.5                                         | 42.5                                 | 38.9                                                           | 11.9                        | 20.0                                      | Warning: your receptor is more than 20m further from the kerb than your monitor - treat result with caution. |
| 62         | 0.7                                         | 5.8                                  | 42.6                                                           | 11.9                        | 30.4                                      |                                                                                                              |

# **Appendix D: Map(s) of Monitoring Locations and AQMAs**

#### Figure D.1 – Map of Non-Automatic Monitoring Site







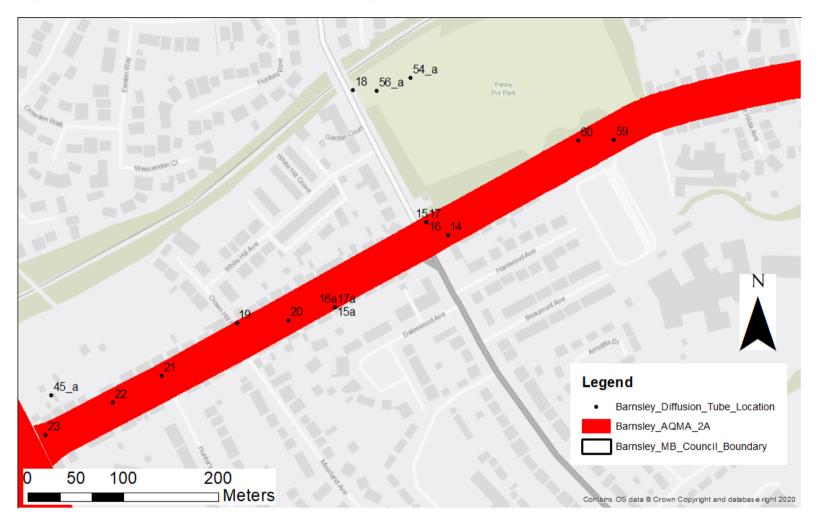
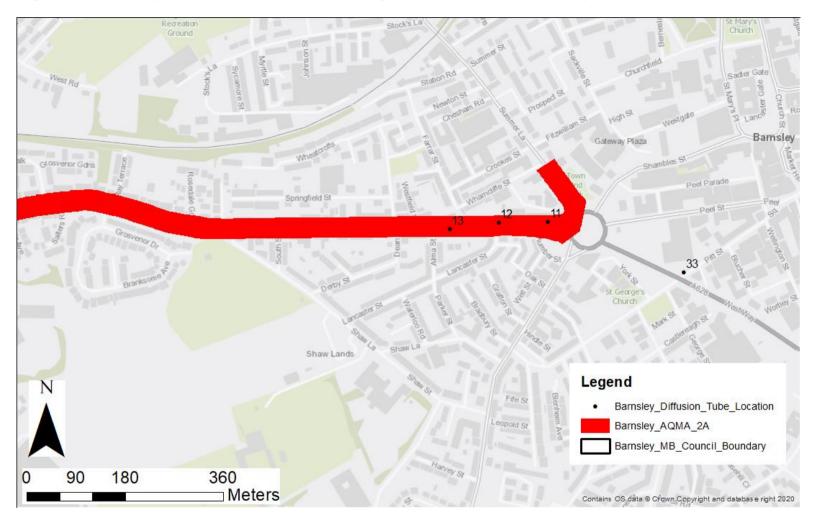
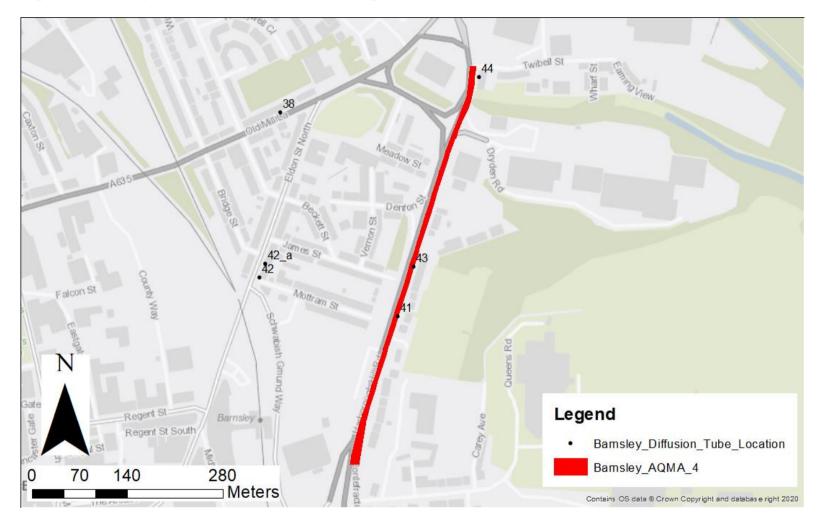
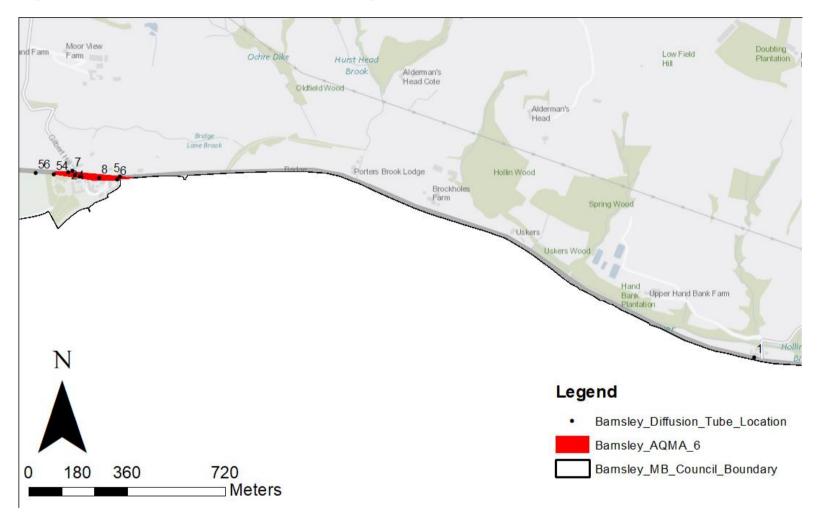



Figure D. 3 – Map of Non-Automatic Monitoring in and around AQMA 2A (West)



Figure D.3 1 – Map of Non-Automatic Monitoring in and around AQMA 2A (East)



#### Figure D. 4 – Map of Non-Automatic Monitoring in and around AQMA 4



Figure D. 5 – Map of Non-Automatic Monitoring in and around AQMA 5



#### Figure D. 6 – Map of Non-Automatic Monitoring in and around AQMA 6

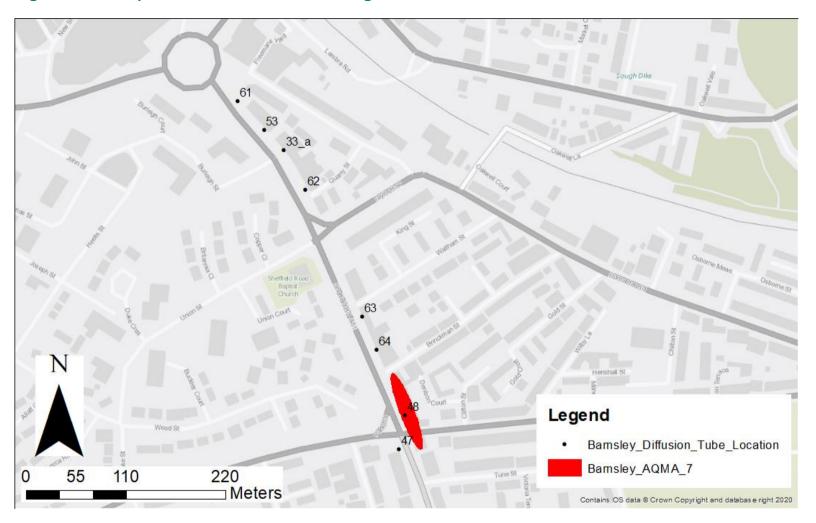
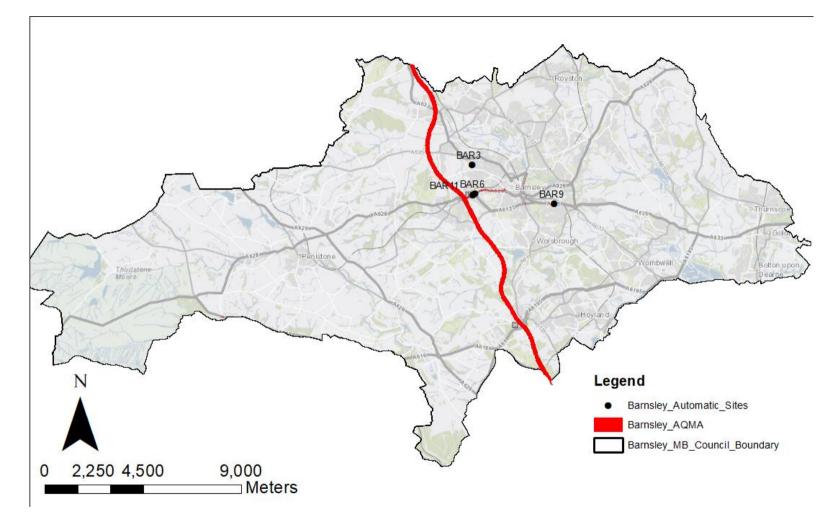




Figure D. 7 – Map of Non-Automatic Monitoring in AQMA 7





# Appendix E: Summary of Air Quality Objectives in England

#### Table E.1 – Air Quality Objectives in England<sup>18</sup>

| Pollutant                                 | Air Quality Objective: Concentration                                | Air Quality<br>Objective:<br>Measured as |
|-------------------------------------------|---------------------------------------------------------------------|------------------------------------------|
| Nitrogen Dioxide (NO2)                    | 200µg/m <sup>3</sup> not to be exceeded more than 18 times a year   | 1-hour mean                              |
| Nitrogen Dioxide (NO2)                    | 40µg/m³                                                             | Annual mean                              |
| Particulate Matter<br>(PM <sub>10</sub> ) | 50µg/m <sup>3</sup> , not to be exceeded more than 35 times a year  | 24-hour mean                             |
| Particulate Matter<br>(PM <sub>10</sub> ) | 40µg/m³                                                             | Annual mean                              |
| Sulphur Dioxide (SO <sub>2</sub> )        | 350µg/m <sup>3</sup> , not to be exceeded more than 24 times a year | 1-hour mean                              |
| Sulphur Dioxide (SO <sub>2</sub> )        | 125µg/m <sup>3</sup> , not to be exceeded more than 3 times a year  | 24-hour mean                             |
| Sulphur Dioxide (SO <sub>2</sub> )        | 266µg/m <sup>3</sup> , not to be exceeded more than 35 times a year | 15-minute mean                           |

<sup>18</sup> The units are in microgrammes of pollutant per cubic metre of air ( $\mu$ g/m<sup>3</sup>).

# **Glossary of Terms**

| Abbreviation      | Description                                                                                                                                                                                           |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AQAP              | Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'    |  |  |
| AQMA              | Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives |  |  |
| ASR               | Annual Status Report                                                                                                                                                                                  |  |  |
| DEFRA             | Department for Environment, Food and Rural Affairs                                                                                                                                                    |  |  |
| DMRB              | Design Manual for Roads and Bridges – Air quality screening tool produced by National Highways                                                                                                        |  |  |
| EU                | European Union                                                                                                                                                                                        |  |  |
| FDMS              | Filter Dynamics Measurement System                                                                                                                                                                    |  |  |
| LAQM              | Local Air Quality Management                                                                                                                                                                          |  |  |
| LSO               | Local Site Operator                                                                                                                                                                                   |  |  |
| NO <sub>2</sub>   | Nitrogen Dioxide                                                                                                                                                                                      |  |  |
| NOx               | Nitrogen Oxides                                                                                                                                                                                       |  |  |
| PM10              | Airborne particulate matter with an aerodynamic diameter of 10µm or less                                                                                                                              |  |  |
| PM <sub>2.5</sub> | Airborne particulate matter with an aerodynamic diameter of 2.5µm or less                                                                                                                             |  |  |
| QA/QC             | Quality Assurance and Quality Control                                                                                                                                                                 |  |  |
| SO <sub>2</sub>   | Sulphur Dioxide                                                                                                                                                                                       |  |  |
|                   |                                                                                                                                                                                                       |  |  |

# References

- Local Air Quality Management Technical Guidance LAQM.TG16. April 2021.
   Published by DEFRA in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.
- Local Air Quality Management Policy Guidance LAQM.PG16. May 2016. Published by DEFRA in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.
- Public Health England. Air Quality: A Briefing for Directors of Public Health, 2017
- DEFRA. Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006
- DEFRA. Air quality appraisal: damage cost guidance, July 2021
- Public Health England. Estimation of costs to the NHS and social care due to the health impacts of air pollution: summary report, May 2018
- Barnsley Metropolitan Borough Council AQAP, available at https://www.barnsley.gov.uk/services/pollution/air-pollution/air-quality/
- DEFRA, February 2015 Getting to grips with air pollution the latest evidence and techniques A briefing for Directors of Public Health
- Clean Air Strategy, available at Clean Air Strategy 2019 GOV.UK (www.gov.uk)
- DfT. The Road to Zero: Next steps towards cleaner road transport and delivering our Industrial Strategy, July 2018
- Eco Business Driving, available at Eco Business Driving (ecobusinessdriving.co.uk))
- Barnsley Metropolitan Borough Council Sustainable Travel Supplementary Planning Document, available at https://www.barnsley.gov.uk/media/15728/sustainable-travel-spd-adopted-2019.pdf
- Zap Map, available at https://www.zap-map.com/live/
- School Streets, available at School Streets project continues its mission to create healthier and safer environments outside our schools (barnsley.gov.uk) & Successful School Streets project sets the scene for future schemes (barnsley.gov.uk)
- Barnsley Sustainable Energy Action Plan, 2020 2025, available at Sustainable Energy Action Plan (SEAP)
- LAQM Technical Guidance (TG) (16), UK Regions (exc. London) Technical Guidance | LAQM (DEFRA.gov.uk)

- DEFRA background mapping resource, Background Mapping data for local authorities 2018 DEFRA, UK
- Public Health Outcomes Framework (PHOF), available at https://fingertips.phe.org.uk/profile/public-health-outcomes-framework
- Air Quality England, available at www.airqualityengland.co.uk
- Department of Transport Route Investment Strategy 2020 -2025 (RIS2), available at https://www.gov.uk/government/publications/road-investment-strategy-2-ris2-2020-to-2025
- Highways England, Summary of research projects to improve air quality on or close to the strategic road network, available at https://assets.highwaysengland.co.uk/Corporate+documents/FINAL+-+HE+Research+Projects+to+Improve+Air+Quality.pdf